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INTRODUCTION

Differential geometry is that branch of mathematics which
investigates geometric forms, primarily curves and surfaces, but
also families of curves and surfaces, using methods of infinitesimal
analysis. It is characteristic of differential geometry that it studies,
above all, properties of curves and surfaces “in the small,” i.e. the
properties of arbitrarily small pieces of curves and surfaces.

Differential geometry arose and developed in close relationship
with analysis which itself grew, to a significant degree, out of geo-
metric problems. Many geometric concepts preceded the corre-
sponding ideas in analysis. Thus, for example, the notion of a
tangent preceded the concept of a derivative and the idea of area
and volume preceded that of an integral.

The origin of differential geometry goes back to the first half of
the eighteenth century and is associated with the names of Euler
and Monge. The first comprehensive work on the theory of surfaces
was Monge's Applications of Analysis to Geometry, 1807.

In 1827 Gauss published the work General Investigations Con-
cerming Curved Surfaces which forms the basis of the theory of
surfaces in its modern form. Since that time, differential geometry
ceased being only an application of analysis and assumed an in-
dependent role in mathematics.

The discovery of noneuclidean geometry by Lobachevsky played
an enormous role in the development of all of geometry, including
differential geometry. Thus, in 1854 Riemann, by his lectures on
The Hypotheses which lie at the Foundations of Geometry, established
the foundations of so-called Riemannian geometry, which in its
applications to multi-dimensional manifolds finds itself in the same
relationship to the geometry of #-dimensional euclidean space as
intrinsic geometry of an arbitrary surface to euclidean geometry in
the plane.

Klein’s group-theoretic point of view expounded in his Erlangen
Program of 1872 was developed by Cartan in respect to applications
to differential geometry; he accomplished this by constructing a
theory of surfaces with projective and affine connection.
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In Russia, the school of differential geometry was founded by
Minding and Pecterson whose basic investigations arc devoted to
questions of the bending of surfaces. These investigations were
continued in the works of many Russian, and later Soviet, geometers.

The lectures of the author on differential geometry in the
Physics-Mathematics Department of the Kharkov State University
form the basic material of the present book. The author’s aim is to
present a rigorous discussion of the fundamentals of diffcrential
geometry and of the methods of investigation which are character-
istic of this branch of mathematics, without disturbing well-
established tradition in the process. A large amount of factual
material concerning differential geometry has been relegated to
exercises and problems, the solution of which ought to be considered
obligatory for serious students of gecometry.






PART ONE

THEORY OF CURVES

CHAPTER I
THE CONCEPT OF CURVE

A curve is one of the fundamental objects considered in differ-
ential geometry. In this chapter we shall discuss the concept of
curve to the extent required in the remainder of the book.

§ 1. Elementary curve. We shall preface the definition of an
elementary curve with some facts about mappings of an arbitrary
set of points in (three-dimensional Euclidcan) spacc.

Suppose M is an arbitrary sct of pointsinspace. We say that f is
a given mapping of the set M into space if each point X in the sct M
is assigned some point f(X) in space. The point /{(X) in space is called
the smage of the point X. The set of points /{M), consisting of the
images of all the points of the set M, is called the image of the set M.

A mapping f of the set M into space is said to be one-to-one and
bicontinuous (in short, topological) if the following three conditions
arc satisfied:

1) The images of distinct points are distinct;

2) If X is an arbitrary point of the set M and X, is a sequence of
points in M which converges to X, then the sequence of points
f(X»), which are the images of the X, converges, and moreover, it
converges to the point f(X) which is the image of the point X;

3) If /(X) is an arbitrary point of the set f(M) and f(X,) is a
sequence in f(M) which converges to f(X), then the sequence of
points X, corresponding to the f(X,), converges, and moreover, it
converges to the point X.

If, for a mapping f of the set M, only the first condition is satis-
fied then the mapping f is said to be one-fo-one; if only the second
condition is satisfied, then f is said to be contrnuous.

We shall now define an elementary curve.

We shall say that a sct y of points in space is an elementary curve
if this set is the image of an open interval on the real line under a

Pogorelov, Dif{l. Geometry
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one-to-one and bicontinuous mapping of the open interval into
space:

Suppose y is an elementary curve and let a << ¢ << b be an open
interval, the image of which is a curve under the mapping f. Let
f1(t), f2(f), and f3(¢) be the coordinates of the point on the curve which
corresponds to the point ¢ on the open interval. The system of
equations

x=ht), y=rf), 2=/

are called the equations of the curve y in the parametric form.

A curve is defined uniquely by its equations in the parametric
form. In this connection, then, we may speak about the definition
of a curve by its equations.

§ 2. Simple curve. A set G of points in space is said to be open if
for every point X of this set we can find a number € > 0 such that
all the points in space whose distances from X are less than e also
belong to G. Obviously, a set consisting of an arbitrary number of
open sets is open.

A neighborhood of the point X in space is any open set containing

this point. .
" A set M of points in space is said to be connected if there do not
exist two open sets G’ and G’’ which decompose the set M into two
subsets M’ and M", one of which belongs only to G’ and the other
only to G”.

We shall now define a simple curve.

A set y of points in space will be called a simple curve if this set is
connected and each of its points X has a neighborhood N such that
the part of y lying in N is an elementary curve.

The structure of a simple curve in the large is clarified by the
following theorem.

THEOREM. The image of an open interval or civcumference under a
one-to-one and bicontinuous mapping into space is a simple curve.

Conversely, a simple curve is the image of an open interval or
circumference under a one-to-one and bicontinuous mapping into
space. Briefly, this can be expressed as follows: a simple curve is
homeomorphic to either an open interval or to a circumference.

We shall not set down the proof of this theorem. We shall only
remark that the property of a simple curve of being homeomorphic
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to an open interval or a circumference, indicated in the theorem,
completely characterizes the curve and, consequently, a simple
curve can be defined by means of this property.

A simple curve which is homeomorphic to a circumference is said
to be closed.

We shall define the concept of a neighborhood of a point on a
simple curve.

A neighborhood of a point X on a simple curve y is the common
part of the curve y and some neighborhood of the point X in space.
According to the definition, each point of a simple curve has a
neighborhood which is an elementary curve. In the sequel, when we
talk about a neighborhood of a point on a curve, we shall have in
mind such an elementary neighborhood.

Suppose a simple curve ¥ is the image of an open interval or a
circumference g under a one-to-one and bicontinuous mapping /.
Let X be an arbitrary point of g and let @ be any neighborhood of X.
Then the image of w under the mapping f is a neighborhood of the
point f(X) on the curve y. Conversely, any neighborhood of the
point f(X) can be obtained in this manner.

The proof of this assertion is straightforward. The image of w
under the mapping f is an elementary curve, inasmuch as w is an
open interval or an open arc of a circumference, and f is one-to-one
and bicontinuous.

In virtue of the bicontinuity of the mapping /, a sphere 4(Y),
which does not contain any other points of the curve y éxcept the
points f(w), can be described about each point f(Y) belonging to
f(w). The set G consisting of all such open spheres ¢(Y) is open. This
open set contains only those points of the curve y which belong to
the elementary curve f(w). According to the definition, f(w) is a
neighborhood of the point f(X) on the curve. This proves the first part
of the assertion.

We shall now prove the seccond part. Suppose f(w) is a neigh-
borhood of the point f(X) on the curve y. Since f(w) is an ele-
mentary curve, it is the image of an open interval « <7 < 8
under a one-to-one and bicontinuous mapping ¢. Suppose for de-
finiteness that g is the open interval a << ¢ < b. Each point 7 is
assigned a definite point on the curve y, and to the latter point there
corresponds a definite point ¢ on the interval. Thus, £ may be con-
sidered as a function of , ¢ = #(7).
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The function £(r) establishes a one-to-onc and bicontinuous
mapping of the open interval « <7 < f onto the open interval
a <<t << b. The image of the interval « << 7 << 8 is the set .

We shall show that e is an open interval. Because of the conti-
nuity of the function #(r), if the points ¢’ and ¢’ belong to the set w
then the closed interval ¢’ < ¢ < ¢” also beclongs to w; this is so
because a continuous funclion #(r) which assumes the values ¢’ and
¢’ also takes on all intermediate values. Thus, w is an interval. We
shall show that its endpoints do not belong to w. In fact, a neigh-
borhood of the point f(X) on the curve y is a part of the curve be-
longing to some open set G. If X belongs to w, i.e. if the image of X
belongs to G, then in virtue of the continuity of the mapping f the
images of all points on the interval g which are sufficiently close to
X also belong to G. It follows from this that w is an open sct and
hence it is an open interval. This proves the second part of the
assertion.

§ 3. General curve. A mapping f of a set M into space issaid to be
locally one-to-one if each of the points of M has a neighborhood in
which the mapping f is one-to-onc.

We now define a general curve.

A set y of points in space will be called a general curve if this set is
the image of a simple curve under a continuous and locally one-to-
one mapping of it into space.

We shall say that the mapping f1 of a simple curve y; and the
mapping fz of a simple curve y2 define one and the same general
curve y if a one-to-one and bicontinuous correspondence can be
established between the points of the curvesy; and y2 where theimages
of corresponding points on these curves coincide on the curve y.

In order to clarify the second part of the above definition, we
shall introduce an example. A gencral curve is given in Fig. 1. This

curve can be thought of as the

1 4 image of a circumference under
a one-to-one and continuous

2 mapping in two distinct ways,

which from the point of view

of the given definition, yicld

5 3 distinct curves.Graphically,onc
Fig. 1 may think of them as follows.
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Suppose a point moves on a circumference. Then its image moves
along the curve. In this connection, the image-point, running along
the curve, may assume successively; the positions 1, 2, 3, 4, 2, 5, but
it can also trace out the curve in the order 1, 2, 4, 3, 2, 5. Mappings,
corresponding to these courses, define distinct gencral curves,
although as point scts they coincide.

Suppose a general curve y is the imlage under a one-to-one and bi-
continuous mapping f of the simple curve 4 into space. We shall say
that a sequence of points f(X,) on the curve y converges to the
point f(X), if the sequence of points X, on the simple curve $ con-
verges to the point X. A neighborhood of the point f(X) on the
curve y is the image of any neighborhood of the point X on the
curve 7 under the mapping f.

Although convergent scquences of points on a general curve yp
and neighborhoods of points on y are defined as images of con-
vergent sequences and ncighborhoods on a simple curve under
some definite mapping f, thesc concepts do not, however, depend on
the particular character of the mapping f in the sense that, starting
with another mapping /', another simple curve 3’, defining the same
general curve p, we arrive at the same convergent sequences and
the same ncighborhoods of points on this curve.

This follows from the possibility of establishing a one-to-onc and
bicontinuous correspondence betwcen the points of the simple
curves 7 and " where the images of corresponding points on these
curves under the mappings f and f* coincide. The images of corre-
sponding convergent sequences on the curves  and ' define the
same convergent sequence on the curve y. The images of corre-
sponding neighborhoods of corresponding points on the curves $ and
7" define the same neighborhood of the point on the general
curve.

If we consider a simple curve, in particular an elementary curve,
as a general curve, then the concept of convergence of points on it is
equivalent to the concept of geometric convergence, and the con-
cept of ncighborhood is equivalent to the concept of geometric
neighborhood, introduced for simple curves.

Since a general curve is the image of a simple curve under a
locally one-to-one and continuous mapping, and a simple curve is
the image of an open interval or a circumference under a one-to-one
and bicontinuous mapping, a general curve is the image of an open
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interval or a circumference under a locally one-to-one and continu-
ous mapping. Such a mapping can be given analytically by means of
the equations

x=h{t), y=/), z=/s()

where f), fe, f3 are functions defined on the open interval a << ¢ < b
or on the half-open interval ¢ < ¢ <¢ b. This system of equations are
called the equations of the curve in the parametric form.

§ 4. Regular curve. Analytic definition of a curve. It follows
from the definition of a general curve that there exists a neighbor-
hood for each of its points which is an elementary curve.

We shall say that the curve y is regular (k-times differentiable) if
each of the points of this curve has a neighborhood which permits a
regular parametrization, i.e. the possibility of giving its equations
in the parametric form

x=h), v=r@), 2=/,

where f1, fe, fs are regular (k-times continuously differentiable)
functions. For 2 = 1, the curve is said to be smooth.

A curve is said to be analytic if it permits of an analytic para-
metrization (the functions fi, fs, fs are analytic) in a sufficiently
small ncighborhood of each of its points.

In the sequel we shall consider regular curves exclusively.

As was shown in the preceding section, a curve may be given by
means of equations in the parametric form

x=x(t), y=y0), z=2z2(),

where x(2), y(¢), 2(¢) are certain functions defined in some open inter-
val @ << ¢ < b or half-open interval a < ¢ < b.
The question naturally arises, when does the system of equations

x=ux(), y=9y{), z=2z() (a<<t<b)

define a regular curve, i.e. when can these equations be considered
as the equations of some curve? The answer to this question is given
in many cases by the following theorem.
THEOREM. If x(t), y(t) and z(t) are regular functions, satisfying the
condition
22t + ¥20) 4 22() >0 (@<t <b),
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then the system of equations
x=x(), y=y0), r=2z{) (@<t<b)

are the equations of some curve y. 1his curve is the image of the open
interval a < t < b under a continuous and locally one-to-one mapping
which assigns to the point t on the open interval the point in space with
coordinates x(t), y(f), 2(f).

Obviously, only the assertion about the local one-to-oneness of
the indicated mapping is necessary in the proof. We shall prove this

assertion.
If the assertion is not true, then there exists a /g in an arbitrarily

small neighborhood of which we can find #; and #2 (f1 # ¢2) such that
%(t) — x(t2) =0, () — y(t2) =0, 2(t1) — z(fs) = 0.
By the mean value theofém we obtain from this that
¥ (@) =0, y'(@) =0, 2z'(¥) =0,

where ¢, ¥#2, #3 are between #; and ¢s. Since ¢ and f3 arc arbitrarily
close to tp, by the continuity of the functions x'(¢), ¥'(f), and 2'(¢),

we have
x'(to) =0, 9'(b) =0, Z(te) =0

and, consequently,
x'2(to) + y'%(to) + 2"2(Ye) = O.

We have thercfore arrived at a contradiction. This completes the
proof of the assertion.
Some simple curves permit a parametrization of the form

x=1, y=g@), z=v() (@<t<b)

for a suitable choice of the #, ¥, z coordinate axes. The equations of
such a curve can be written in the equivalent form

y =), z=1ypk) (@<x<b).
THEOREM. Suppose y is a regular curve and that
x=hH), y=/lt), z=/f) (@<t<b)

18 1ts regular parametrization in a neighborhood of the point (%o, Yo, 20),
corresponding to t = ty. Suppose f1'(t) # O at this point. Then in a
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sufficiently small neighborhood of the point ty the curve y can be de-
fined by means of the equations

y =gy z=r9p),

where @ and vy are regular functions of x.

In fact, according to the implicit function theorem there exists a
regular function y(x), equal .0 % for x = x¢ and satisfying the
equation

x = f1(x(%))

for all x near x¢. Differentiating this identity and cvaluating {or
x = xp we find 1 = f1'(fo) ' (x0). It follows that y'(x¢) 7 O. Thus, the
function y(x) is monotonic in a neighborhood of xg and consequently,
for sufficiently small é the mapping of the open interval xg — ¢ <
< x < %9 + 6 onto the f-axis, defined by the equation ¢ == y(x),
will be one-to-one and bicontinuous.

It follows from this that in the neighborhood y(xvg — d) <t <
<< y(x0 + 6) the curve y can be defined by the cquations

y = f2(x(%), z=/[a(x(x)) (%0 — 0 <x<x0+9).

This completes the proof of the theorem.

§ 5. On the implicit representation of a curve. For simplicity
of presentation, the proofs of the fundamental propositions of this
section will be carried out for the case of plane curves.

The corresponding propositions for space curves will be stated
without proof.

A curve is said to be a plane curve if all of its points lic in a plane.
We shall assume that this planc is the ¥, y-plane.

We shall say that a plane curve is defined by the equation

7’(:‘5' y) =0,

expressing by this only the fact that the coordinates of points on
the curve satisfy the given equation. In this connection, there may
exist points in the plane which satisfy the given equation but do not
belong to the curve.

Thus, defining a curve by means of the equation ¢(x, y) =0,
in distinction to the parametric definition considered above, is
incomplete. Nonetheless, some questions concerning the curve can
be answered if we have even such an incomplete definition of it.
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In the consideration of curves, defined by equations in the im-
plicit form, an important role is played by the following theorem.

THEOREM 1. Suppose @(x, y) ts a regular function of the arguments
%, y. Suppose M is the sel of points in the x, y-plane salisfying the
equation @(x,y) = 0; let (%o, yo) be a point in this set at which
@22 + @y2 # 0. Then the point (%o, yo) has a neighborhood such that
all the points of the set M belonging .o it form a regular elementary
curve.

Proor. Suppose, fordefiniteness, that ¢, = 0 at the point (xg, yo).
By the implicit function theorem, therc exist positive numbers §
and ¢, and a regular function ¢(x), defined in the interval xy — ¢ <
< x < xg 4 4, such that all the points (x, p(x)), Xo—d<<x<<x¢-}-0
satisfy - the cquation ¢(x, y) = 0, where these points are the only
points of the rectangle xo — 6 < x <<xg+ 9,90 —e <y < yo + ¢
satisfying the equation ¢(x, y) = 0. The elementary curve, about
which we are talking in the theorem, is defined by means of the
equation

y=19), F—0<x<x+9).

This proves the theorem.

The corresponding theorem for space curves consists in the fol-
lowing.

Suppose @(x, vy, 2) and p(x, v, 2) ave regular funclions of the argu-
ments x, y, z. Suppose M is the set of points in space, salisfying the
equations

p6,,2 =0, (r, 5,2 =0,

and (xo, Yo, 20) 1S a point in this set at which the rank of the matrix

(‘I’z Py ‘I'z>

Yz Yy Ve

equals two. Then (he point (xg, yo, 20) has a neighborhood such that all

the points of the set M belonging to it form a regular elementary curve.
The proof of this theorcm is also based on the application of the

implicit function theorem and does not differ fundamentally {rom
the proof of the corresponding theorem for plane curves.

§ 6. Singular points on regular plane curves. Suppose 7 is a
regular plane curve and P is a point on y.
A point P on the curve y is called a regular point if the curve
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permits a regular parametrization ¥ = x(f), ¥ = y(f) in a neigh-
borhood of this point satisfying the condition 2’2 4+ y'2 £ 0 at the
point P. But if such a param trization does not exist, then P is
called a singular point of the curve.

Thus, " = 9" = 0 at a singular point for an arbitrary regular
parametrization of a regular curve.

We now consider in more Jetail the question of singular points
on plane analytic curves.

LEMMA. Suppose y is an analytic curve and that O is a point on y.
Then with a suitable choice of coordinate axes the curve can be para-
metrized so that its equations will have the form

x = ait™,
y =byt™ 4 bot™ 4 -+, nmp < my

in a neighborhood of the point O.

Proor. We take the point O as the origin of coordinates. Suppose
x = x(¢), ¥y = y(f) is any analytic parametrization of the curve.
Without loss of generality, we may assume that the point O corre-
sponds to the value ¢ = 0 of the parameter.

Suppose the first nonzero derivatives of the functions x() and
y(¢) at the point ¢ == 0 have orders n; and m; respectively, where
n1 < my. (If #1 > my, the roles of x and y can be interchanged.)

We introduce a new parameter s related to ¢ by means of the

equation
f3 1/n,;
= O
Z™M(0)t™

For such a choice of the parameter, the equations of the curve y
have the form
x = as™,
y = bis™ + bos™ )
in a neighborhood of the point O, which was to be proved.
THEOREM. Suppose an analytic curve is defined by means of the
equations
x = ™,
y = but™ + bot™ -y e, mp < my

in a neighborhood of the point O. Then a necessary and sufficient
condition that the point O be a singular point on the curve is that at
least one of the my not be divisible by n1.
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PROOF. Necessity. We note first of all that all the my and #;
cannot be even, since then x(f) = x(— ¢), y(t) = y(— ¢) for arbi-
trarily small ¢, i.e. the one-to-onen ss condition on the values of the
mapping in an arbitrarily small neighborhood of the point £ = 0 is
invalidated.

Suppose all the m; are multiples of #, (where #1, obviously, is odd).
We introduce the parameter s = #™ .o replace £. Then the equation
of the curve in a neighborhood of the point O assumes the form

x = a5,

y = bis* + bgskz 4+ .-

Obviously, the point O corresponding to the value s = 0 of the
parameter is a regular point on the curve.

Sufficiency. Suppose at least one of the my is not divisible by #.
We shall show that the point O is a singular point. If the point O is
a regular point, then in a neighborhood of O the curve can be
defined by either the equation y = ¢(x) (¢(x) is an analytic function)
or by the equation x = p(y) (where y is an analytic function).

Since y/x tends to a finite limit as £ — O, the curve can indeed be
defined by the equation

y = plx) = 12 + cax® |- -

in a neighborhood of the point O. Substituting x = x(f) and y = y(¢)
into this equation, we obtain the identity

byt™ + bot™ f - = crap™ - Czdlztznl 4+ -

It follows from this that all the s, are multiples of #;. We have
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therefore arrived at a contradiction. This completes the proof of the
theorem.

REMARK. If the point O is a ingular point, where #; and m; are
even, then it is called a turning point of the second kind. A curve has
the form shown in Fig. 24 in a neighborhood of this point.

If the point O is singular, where s is not divisible by #;, and #; is
even and my is odd, then O is called a turning point of the first kind.
The form of a curve in a neighborhood of such a singular point is
shown in Fig. 2b.

We have seen that the answer to the question whether a point on
a curve is a singular point or a regular point, is equivalent to in-
vestigating some special parametrization of the curve. In order to
obtain this parametrization it is sufficient to know how to expand
the functions x(f) and y(f) of an arbitrary analytic definition of the
curve in a power scries of analytic functions

°= ’(‘—(%—)'

The Biirman-Lagrange theorem known from the theory of
analytic functions asserts that these expansions can be found.
In conclusion, we point out a simple sufficiency criterion that the
point O on the curve y be a singular point.
THEOREM. Suppose the analytic curve y is defined by means of the
equations
x=2x0), y=y0

where x(t) and y(t) are analytic functions of the parameter t in a neigh-
borhood of the point O. Suppose the first nonzero derivatives of the
functions x(t) and y(t) have orders ny and my respectively, where
ny << miy.

Then the point O will be a singular point if my is not divisible by ny.
Here, the point O will be a turning point of the second kind if both ny
and m are even, and a turning point of the first kind if ny is even and
m 1s odd.

§ 7. Singular points on analytic curves, defined by equa-
tions in the implicit form. Suppose a plane analytic curve y is
defined by means of the equation ¢(x, ¥) = 0, where ¢(x, y) is an
analytic function of the variables x and y.
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If pz2 + @42 #£ 0 at the point O(xp, ¥o) on the curve y, then this
point on the curve is a regular point as was shown in § 5. Thus, the
only points on the curve which ca) be singular points are thosc at
which ¢z = @4, = 0.

Without loss of generality, we may assume that the point O is the
origin of coordinates. In a neighborhood of the point O, the curve y
permits a parametrization of the formn

x = ait™,
y = bltml + bztmz 4 .

where one may assume that #; < m;. Otherwise, we can interchange
the x and y axes. In order to determine whether the point O is a
singular point of the curve and to explain the naturc of the singu-
larity at this point, it is sufficient to know the exponents »,,
my, ma, -

In order to determine these exponents, we make use of the iden-
tity

The extent of this course does not permit us to stop to consider
this question in more detail, and we shall restrict ourselves to the
following remarks. The exponents n;, my, ma, --- are not defined
uniquely by the above identity. This is due not only to the fact that
going over to a new variable s according to the formula ¢ = s¥ does
not change the character of the parametrization but also to the fact
that in the gencral case several analytic curves which are gco-
metrically different, even in an arbitrarily small neighborhood of the
point O, will satisfy the equation p(x, ¥) = 0. In this connection,
the character of the singularity of the point O on various curves will
be distinct. The investigation of the singular point O for a curve,
defined by the equation ¢(x, y) = O, must be understood in the
sense of investigating the nature of the singularity of the point O
with respect to every analytic curve, defined in a neighborhood of
the point O by means of the equation ¢(x,y) = 0.

We shall now consider an example.

Suppose the expansion of the function ¢(x, ¥) in powers of %, y
begins with terms of the second degree

‘P(x‘ y) = agx? + anxy + a02y2 4+
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We shall distinguish three cases:

a) agoaoz — }a11?2 >0 b) azoaoz — }a11?2 < 0;
C) as0d92 — iauz = 0.

By means of a rotation of axes, we can attain the case where the
term containing xy will be absent in the expansion of the function
@(x, y) in a power series.

Substituting x(!) and y(!) into the expansion of the function
@(x, ¥) we obtain an identity in . For #y < 1, the lowest power of £,
equal to 2»3, has only one term, namely aspa;2t?™, It follows that
azp = 0, which is impossible either in the first or in the second case.
It remains to assume that #; = m,;. Then in the first two cases,
the terms agoa12t>™ and ageb12>™ have the lowest degree. This is
also impossible in the first case, since azg and ag2 have the same
sign, and it follows from the identity that agea12 + a92012 = 0.

Thus, in the first case there does not exist an analytic curve which
satisfies the equation ¢(x, y) = 0 and contains the point O. It turns
out, in this case, that in a sufficiently small neighborhood of the
point O no points exist which are different from O and satisfy the
equation ¢(x, y) = 0. When the curve is defined as the geometric
locus of points satisfying the cquation ¢(x, y) = O, such a point is
called an ¢solated singular point.

In the second case, we obtain two systems of values for a; and b,,
with accuracy up to within an unessential factor,

a; = \/Iaozl. by = \/la20|i
ap = Viaoe|, b1 = — Vlaz|.

Now if we begin with any system of values for a; and by, and n;=m;,
then the exponents my and the coefficients by are already uniquely
determined by the identity ¢(x(¢), y(f)) = O. It is not difficult to
prove that all the exponents my are multiples of #; = m;. Thus, in
the second case there exist two analytic curves, geometrically
distinct in an arbitrarily small neighborhood of the point O. The
point O is a regular point for these curves inasmuch as all m, are
divisible by #1. When the curve is defined as the geometric locus of
points satisfying the equation ¢(x, y) = 0O, the point O is still con-
sidered as a singular point in the case under consideration, and it
is called a nodal point.

Finally, we consider the third case. In this case we may assume
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that asp = O since agoag2 = O. The expansion of the function ¢(x, y)
has the form

@(*, y) = ao2y? + agoxd 4- - .
We shall assume that agg 5= 0. This corresponds in the general case
to the fact that the forms @s = asox2+a11%y ++ ae2y? and @3 =
azex3 4+ --- 4 aopay® do not have common divisors,

Substituting x(¢) and y(¢) for x and y in the expansion of the func-
tion @(x, y), we note that the terms with the lowest powers of £ are
ag2b12t2™ and agea;3°™. It follows from this that 2m; = 3ny, i.e.
my is not divisible by #;. Consequently, the point O is a singular
point of the curve.

It turns out that if both #; and #; are assumed to be even, then
all the m; turn out to be even, since they can be expressed linearly
and homogeneously in terms of m; and #;. But, as was noted above,
ny and all the my cannot be even. Therefore, only #; is even. This
means that the singular point O is a turning point of the first kind.

§ 8. Asymptotes to curves. Suppose y is a non-closed curve

and that

x=x), y=9y{) (@<t<b
are its equations. We say that a curve tends to infinity from one
side if x2(f) + y2(f) > oo as t— a (or as t— b). But if x2() +
+ y2(¢) » oo for both { — a and ¢ — b, we say the curve tends to
infinity from both sides. Obviously, the property of a curve to tend
to infinity does not depend on its parametrization.

Suppose the curve y tends to infinity, for example, x2+4y2%— oo
as { — a. The straight line g is called an asymptote to the curve y if
the distance d(f) of a point on the curve y to the straight line g tends
to zero when ¢t — a.

THEOREM. A necessary and sufficient condition that the curve y
defined by the equations

x=20), y=y0t (a<i<b
and tending to infinity as t - a, have an asymptote is that
1. Each of the two ratios

x(t)/p(t), yO)/p(t), where p(t) = {x2(t) + y2(A)},
tend to a limil. Suppose, for definiteness, that
x(0)/pt) >« y(B)/p(t) > B;
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2. The ex;bresslz'on
— pa) + ay(®)
also tends to a definite limit as t — a, provide the first condition is
satisfied.
If this limit is denoted by p, then the equation of the asymptote will be
—fx4+ay—p=0.
Proor. Suppose g is an asymptote to the curve and that « and 8

are its direction cosines. The equation of the straight line can be

written in the form
— fx+ oy —p=0.

The point Q(f) on the curve tends to infinity, coming arbitrarily
close to the straight line g as ¢ — a. It follows from this that the
ratios x(f)/p(t), y(f)/p(t) as ¢ > a converge either to « and §, or to
— o and — f, depending on which of the two directions on the
straight line g the projection of the point Q(¢) tends to infinity.
Suppose, for definiteness, that

x@)fp(t) >« y(E)/p(t) > B.

The quantity — fx(¢) + «y(t) — p is equal, to within sign, to the
distance from the point Q(¢) to the straight linc g and, consequently,
it tends to zero. Thercfore, the expression — fx(f) + ay(f) tends to a
definite limit (p) as ¢ > a. This completes the proof of the necessity
portion of the theorem.

We shall now prove the sufficiency. Suppose

2Olplt) > @ yOlpl) > B, ay(t) — px(t) > p
as t - a. We shall show that the straight line g with equation
—pfx4+ay—p=0
is an asymptote to the curve. In fact, the expression
— px(t) + ayt) — p

is, to within sign, the distance from the point ¢ on the curve to the
straight line g. But
— Px(t) + ay(t) + >0
as t— a.
This completes the proof of the thcorem.
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EXAMPLE. Suppose the curve y is defined by the equation
y=9x) (@<x<b
or, what amounts to the same thing,

x=t y=9f) (@<t<b).

Suppose ¢(f) -~ coast — a.
When { — a,

P(?)
——m——— o > 0 — 1
V2 + g2(t) V2 + g2(l)
—t4+0-¢t) > —a.
Thus, as £ — a, we see that the curve has the asymptote
x—a=0.

We now consider the problem of asymptotes to a curve defined by
means of an equation in the implicit form ¢(x, y) = 0.

As noted, the equation ¢(x, ¥) = O defines a curve only in the
sense that points on the curve satisfy the equation ¢(x, ¥) = 0 but,
generally speaking, these do not exhaust all points in the plane
which have this property. The problem of finding the asymptotes to
a curve, defined by means of the equation ¢(x, y) = 0, is not com-
pletely defined. It turns out to be possible to only point out some
set of lines which contain the asymptotes among them.

We shall restrict ourselves to the case of algebraic curves (i.e. the
case where ¢(x, y) is a polynomial in the variables x and y).

Suppose
x =%+ Au,

y =79+ pu
are the equations of the asymptote in the parametric form. Suppose

() is a point on the curve which is the closest to the point # on the
asymptote. The coordinates of the point Q arc

x(u) = % + M + (u),

y(u) = ¥ + pu + (),
where
&) and n(x) - 0 as # — oo,

Pogorelov. Diff. Geometry.
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We denote by @y the set of all terms of degree % in the polynomial
@. We shall then have

@ =@n+ Gn-1+ ** + Qo

Substituting x = x(#), ¥y = y(#) for x, y in ¢(x, y) and factoring
terms containing #”* and #”~1, we obtain

p(x(n), y(u)) = umpa(d, u) +
w Wi (pn(d, w2 + V(pald, )y + @A )} + .

In the right member of this equation, terms having powers less than
un~1 are not written out.
1
Since ¢(x(#), y(#)) = O and, consequently, —ntp(x(u), y(u)) - 0
;7
as # — oo, we have @g(4, ) = 0.
In an analogous manner, we obtain

Z(@n(A, w))" + F@nd @), + @r-1(4, p) = 0.

Since (x, y) is any point on the asymptote, this equation is the
equation of the asymptote.

EXERCISES FOR CHAPTER 1

I. A point M moves in space in such a way that its projection
onto the x, y-plane moves uniformly along the circumference
x2 4 y2 = a2 with angular velocity w, and its projection onto the
z-axis moves uniformly with velocity ¢. The curve traced out by the
point M is called a simple helix. Derive the equation of the helix
in the parametric form taking time ¢ as the parameter. Assume that
the coordinates of the point M are (a, 0, 0) at the initial moment
(t=0).

ANSWER: x = a cos wf, y = a sin i, z = ct.

2. A simplc helix (see Exercise 1) is projected onto the x, y-plane
by means of parallel straight lines which form an angle & with the
z-axis. Find the equation of the projection. For what & will the
projection have singular points? Discuss the nature of the singular
points.

ANSwER: If the projecting lines are parallel to the y, z-plane, then
the equations of the projection will be

x=acoswt, y=cltand 4+ asin wt.
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The projection will have singular points if tan & = aw/c. The singu-
lar points are turning points of the first kind.

3. A circular disc of radius @ rlls uniformly without slipping
along the straight line g with velocity v. I'ind the equation of the
curve ¥ which is described by a point M which is fixed to the circular
disc. Under what condition does the curve have singular points?
Discuss the nature of the singular po.nts.

ANSWER: If the straight line g is taken to be the x-axis and the
point M is initially on the y-axis below the center of the circular
disc, then the equations of the curve y will be

x = vt — bsin vi/a, = a — b cos vi/a,

wherc b is the distance of the point M from the center of the circular
disc. The curve has singular points if the point M is on the circum-
ference of the circular disc (in this case the curve y is called a cy-
cloid). Singular points are turning points of the first kind.

4. Investigate the singular points of the semicubical parabola
y2 = 23,

ANsSWER: (0, 0) is a singular point; it is a turning point of the
first kind.

5. Prove that a curve defined by means of the equation

|x|*2 4+ |y[*» = a®™ (astroid)

is an analytic curve. Find its singular points. Discuss the nature of
the singular points.
ANnsweR: The curve obviously permits the analytic parametri-
zation
¥ =acos3f, y=asind¢,

and conscquently, it is analytic. The singular points are (0, 1),
(0, — 1), (1,0), (— 1, 0). The singular points are turning points of
the first kind.

6. Write down the cquations of the asymptotes to the following
curves:

a) x = asint

y = a(cost + In tan ¢/2) (tractrix);

b) %% 4 93 — 3axy = 0 (folium of Descartes).

ANSWER:

a) x = 0.

byx+y+4+a=0.
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PrROBLEMS AND THEOREMS FOR CHAPTER I

11. Suppose the elementary curves y1 and y2 have a point in
common and are subsets of a simple curve y. Prove that at least
one of the following properties holds:

a) the curves y; and y2 form an elementary curve;

b) the curves y; and y2 form the entire curve y.

l2. Prove that any simple curve can be covered with a finite or
denumerable set of elementary curves.

13. Prove the theorem in § 2, Chapter I: Every simple curve is the
image of an open segment or of a circumference under a one-to-one
continuous mapping into space.

2. Suppose

x=x(), y=y@), z=2z0

is any parametrization of an elementary curve. Then any other
parametrization has the form

x =%(o(7)), y=y(e(r), z=2zo(r),

where o(r) is a continuous strictly monotonic function.

3. What is the order of regularity of the curve defined by an
equation in the implicit form ¢(x, y) = O guaranteed by an »-times
differentiable function if ¢z2 + ¢,% £ 0? Can the curve possess a
higher order of regularity? Construct an example.

4. Construct an example of a curve which does not permit a
smooth parametrization of any subset of itself.

5. Suppose a plane analytic curve y is defined by the equation
¢(x, y) = 0 in a neighborhood of the point (xo, y0) where ¢ is an
analytic function. Suppose the function ¢ and all its derivatives up
to and including that of the (# — 1)-st order vanish at the point
(%0, vo). Prove that if all the zeros of the polynomial

o

P(f) == Zlc+l=n ‘fk mir

(ro, o)
are real and distinct, then the point (x¢.y9) on the curve y is a
regular point in the sense of the definition in § 3, Chapter I.

6. Find the conditions for the existence of an asymptote to the
space curve
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which tends to infinity as { > «, analogous to that obtained in § 8,
Chapter I, for a plane curve.

Write the equation of the asympf »te.

7. Write the equation of the asymptotes to an algebraic space
curve, defined by means of the equations, in the implicit form,

plx,9,2) =0, 9(xy2 =0,

where ¢ and y arc polynomials in x, y, and z, similar to the way this
was done for plane curves in § 8, Chapter I.



CHAPTER II

CONCEPTS FOR CURVES WHICH ARE RELATED
TO THE CONCEPT OF CONTACT

Suppose M and M are sets of points in space having the point O
in common. Let X be an arbitrary point in the set M, A(X) its
distance from the set M (the greatest lower bound of the distances
of the points of the set M from the point X) and d(X) the distance
of the point X from the point O.

We shall say that the set M has contact with the set M in the
point O if the ratio £(X)/d*(X) (« > 1) tends to zero when the point
X approaches O arbitrarily closely. We shall introduce many
concepts for curves using the notion of contact. We shall consider
these concepts in the present chapter.

§ 1. Vector functions of a scalar argument. In the following
discussion we shall make extensive use of the methods of vector
analysis. In this connection, we first recall the definition of certain
concepts.

Suppose G is an arbitrary set of points on the real line, in a plane
or in space. We say that a vector function f is defined on the set &
is f assigns a vector f(X) to each point X in G.

The concept of limit is introduced for vector functions the way
this is done in analysis for scalar functions. We say that }(X) — a as
X — Xo if |[{(X) — @] - 0 when X — X,.

Theorems on limits, analogous to limit theorems for scalar
functions, hold for vector functions. For example, if f(X) and g(X)
are vector functions and A(X) is a scalar function for which /(X) — a,
g(X) - band A(X) ->m as X - X, then

HX) £ g(X) >a £ b,

The proof of these assertions does not differ fundamentally from
the proof of the corresponding assertions for scalar functions in
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analysis. For example, we shall prove the last assertion. We have

/(X)) X g(X) —a X b = [(X) X (g(X) —b) — b X ({(X) —a) <
IHX) X (g(X) — b) + 1b X (/(X) —a)| <
H(X)] 1g(X) — 8] + 1B] [/(X) — 4.

It follows from this that |/(X) X g(X) —a X b -0 as X -> Xj.
And this means that {(X) X g(X) - a X b.

The concept of continuity for a vector function is introduced the
same way it is done for scalar functions. Namely, the function f(X)
is said to be continuous at the point Xg if f(X) — f(Xo) as X — Xp.

Suppose f(X) and g(X) are vector functions which are continuous
at the point X, and that A(X) is a scalar function which is continu-
ous at this point. Then the vector functions

AXNX), 1(X) £ g(X), ((X) X g(X),

and also the scalar function f(X)-g(X) are continuous at the point
Xo. This continuity property is a simple consequence of properties
of the limit.

We now discuss the concept of derivative.

Suppose f(¢) is a vector function defined on a closed interval. We
say that the vector function f has a derivative at the point £ on an
open interval if the limit of the ratio

fe+h — 10

h

exists as & — 0. We denote the derivative of f({) at the point ¢ by
£ ).

If f(f) and g(t) are vector functions which are differentiable
functions at the point ¢, and A(¢) is a scalar function, differentiable at
this point, then A(¢)/(¢), f(¢) 4= g(®), /(¢) X g(¢), /() -g(¢) are functions
which are differentiable at £ and we have

()" = Xf + 4,
e =1+¢,
fxeg =fxg+fxg,
(te=re+feg.
These differentiation formulas are obtained exactly as the corre-
sponding formulas for the differentiation of scalar functions in
analysis.
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The derivative of the vector function f'() is called the second
derivative of the function /(!) and is denoted by f’(¢). The third,
fourth, fifth, and higher derivetives are defined analogously. A
function, having continuous derivatives up to the A-th order
inclusively, on the open interval (a, b), is called a k-times differenti-
able function on this open interval.

Suppose ey, €2, ea are three vectors, not lying in one plane. Every
vector 7 permits a representation of the form

r = x161 + Yyes 4 zeg;

the numbers x, y, z are uniquely defined and are called the co-
ordinates of the vector » with respect to the basis e), ¢z, ¢3. Suppose
7(t) is a vector function defined on a segment. We shall define three
scalar functions x(¢), y(¢), 2(¢) by the condition

r(t) = x(t)ex + y(t)e2 + z(¢)es.

Hence, if the functions x(#), y(f), z(¢) are continuous or differ-
entiable, then the vector function 7(f) is continuous respectively
differentiable. Conversely, if the vector function 7(¢) is continuous or
differentiable, then the functions x(¢), y(f), z(f) are continuous
respectively differentiable.

In order to prove the second assertion, we form the scalar product
of the equation 7(t) = x(t)exr + y(f)e2 + z(t)es with the vector ey’
which is perpendicular to the vectors e; and es. We then obtain
x(t)(e1-e1’) = 7(f)+e1’. From this it is clear that the continuity or the
differentiability of the vector function 7(f) implies the continuity
respectively the differentiability of the function x(f). We proceed
analogously for the functions y(f) and z(¢).

The Taylor formula holds for vector functions. Namely, if f(¢) is an
n-times differentiable function, then

n

a4
6+ 4 = 1) + A7) + -+ 52 g+ e, ap),
where le(t, 4¢)] - 0 as 4¢ - 0.
In fact, f(t) = x(t)er + y(t)e2 -+ z(f)es. But

n

x(t 4+ At) = x(t) + Atx'(t) + - + -it (xE®(t) + 1),

n

Yo+ ) =y + A0 4 o+ ™ + ),
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n

at
2+ AL = z2(t) + AtZ'(@) + - + —

(z™(t) + e3).

Multiplying these equations by ey, ¢2, es respectively, adding, and
then noting that x¥e; + ¥ (t)eg + 2k (t)eg = f(*)(¢), we obtain the
Taylor formula for the vector function f(f).

The concept of integral in the Riem~nn sense for vector functions
is introduced literally as in the case of scalar functions. The integral
of a vector function possesses the usual properties. Namely, if f(f)
is a vector function which is continuous on the closed interval
a <t<banda<c<b,then

J it = J 100 + / feoe
If m is a constant, then
_/I"m/(t)dt =m fb/(t)dt.
If » is a constant vector then

b b
Sr-f@)dt =r- [ f(t)de,

@

b

;r X f(t)dt = r x [ f(t)dt.

a

The formula
d
ooy = 1

for the differentiation of a definite integral is valid.
In conclusion, we note that the parametric definition of a curve
by means of the equations

x=2x(), y=9@), z=2z(
is equivalent to the definition of the curve by means of one vector
equation
r=r(t) = x(t)er + y(t)ez 1 z2(¢)es,
where e1, ¢2, ¢3 are unit vectors having the directions of the co-
ordinate axes %, v, 2.
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§ 2. Tangent to a curve. Let y be
a curve, P a point on y and let g be a
straight line passing through te point
P. Let us take a point Q on the curve
and denote its distance from the point
P and from the line g by d and 4 re-
spectively (Fig. 3).

We shall call the line g the tangent to
the curve y at the point P if Aj/d -0
when Q > P.

If the curve y has a tangent at the
point P then the straight line PQ ap-
proaches this tangent as Q — P. Con-
versely, if the straight line PQ ap-
proaches some line g as Q@ — P then this
straight line is a tangent. To prove this Fig. 3
assertion it is sufficient to note that 4/d
is the sine of the angle between the lines g and PQ.

THEOREM. A smooth curve y has a unique tangent at each point. If
v = r(!) is the vector equation of the curve, then the tangent at the point
P corresponding to the value t of the parameter, has the direction of
the vector v'(t).

Proor. Let us assume that the curve has a tangent g at the point
P corresponding to the value ¢ of the parameter. Suppose 7 is a
unit vector having the same direction as the line g. The distance 4
of the point Q, corresponding to the value ¢ 4+ 4¢ of the parameter,
from the point P is equal to [r(t 4 42) — »(¢)|. The distance % of the
point Q from the tangent equals |{#(¢ + 4¢) — 7(¢)) X 7|. According
to the definition of the tangent

B_ 1A —rO) X7l o4 o

d 7+ 46 — #({)]

But
7(t + A4t) — r(Y)
At T x|
WA= o
Al |

(r(t 4+ At — r(t)) x 7|
r(t + 48 — ()
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From this it follows that
7{() X 7=0.
This is possible only when the vector = has the same direction as the
vector 7'(f). Thus, if the tangent exists, then it has the direction of
the vector #'(f) and, conscquently, it is unique.
The fact that the line g, passing through the point P and having

the same direction as the vector 7'(¢), is a tangent, is also true; for,
as the preceding discussions show, for such a line we have

- ua+m%—m»Xp@ﬂ 7' X 7)1 _

d- 7t + 4t) — 7(0), RN

This completes the proof of the theorem.

Knowing the direction of the tangent, it is not difficult to write
its equation. In fact, if the curve is given by means of the vector
equation 7 = 7(#), then the position vector 7 of an arbitrary point on
the tangent can be represcnted in the form

F=r(t) + '(2).

This is then the cquation of the tangent in the parametric form
{(with parameter 1).

We shall write the equation of the tangent for a number of curves
given in the analytic form.

Suppose the curve is given by means of equations in the para-
metric form

x=2x(f), y=9y), z=z().

Giving the curve in this form is equivalent to giving its equation in
the vector form

r =) = x(t)er + y(t)ea + z(f)es,

where ¢, e, e3 are unit vectors in the directions of the coordinate
axes. Replacing the vector equation

F=r{t) + ()

by three scalar equations, we obtain the equations of the tangent,
corresponding to the parametric form

F=all) + 0, 7=y + W0, 2=z + 20
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or in the equivalent form
F—xll) _y—yl) _ =)
x'(t) y'(®) Z'(t)
In the particular case of a plane curve given by means of the
equations

the equation of its tangent is

F—al) _ 5 —y0)
() y'(®)
The equation of the tangent in the case when the curve is given by
means of the equations

(*) =), 2= 2(x)

is easily gotten from the equation of the tangent for the case where
the curve is given in the parametric form. It suffices to note that
giving the curve by means of the equations (*) is equivalent to
giving it in the parametric form

x=t y=y@), z=2z().

The equation of the tangent to the curve, given by means of the
zquations (*), is written as

or in the equivalent form

y(®) + ¥’ (%) — %),

z2(x) + Z'(x)(& — x).

[n particular, if we ar: dealing with a plane curve and its equation
is y = y(x), then the equation of the tangent to it will be

y
p-4

¥ =y + ¥ #®)E — 2).

Finally, we write down the equation of the tangent at the point
(%0, ¥0, 20) to a curve given by the equations

'P(x' ¥, Z) =0, W(x’ v, z) =0,
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where the rank of the matrix
(‘Pz Py %)
Yz Vy V2
equals two. Suppose

x=x(t), y=y{), z=2z()

is any regular parametrization of the curve in a neighborhood of the

point (%o, ¥o, 20).
The equation of the tangent to the curve at the point (xg, yo, 2o) is

T—x F—% _ z2-2

yot ZO’

!

X0

Thus, in order to obtain the equation of the tangent it suffices to
know zo":y0’:20’. We shall now compute these ratios.

We have the identities @(x(2), ¥(2), 2(f)) = 0, p(x(¢), y(¢), z(¢)) = 0.
Differentiating these identities with respect to ¢, we have

pzx + ‘Pyy, + @.2' =0,
vo¥' + yyy + yr’ = 0.
It follows that

’ ’ ’

x y R
Py Pz Pz Pz Pz Py
Yv Ve Yz Yz Yz Yy,
and the equation of the tangent assumes the form
T — xo ¥ — Yo . Z— 290 )
Py Pz Pz Pz 9z Py’
Yy Yz Yz Yz | Yz WYy
where the derivatives ¢z, @y, - - -, y; are cvaluated at the point of

tangency (¥o, Yo, 20).
If the curve lies in a plane and is defined by the equation
¢(x, ¥) = O, the equation of the tangent will be

T—2x% J—Y
Pz Py

In order to derive this equation it is sufficient tonote that defining a
curve in the x, y-plane by the equation ¢(x, y) = 0 is equivalent to
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defining it in space by means of the equations

p(x,y) =0, z2=0.

passes through the point P and is perpendicular to the tangent at
this point. Writing down the equation of this plane provided we
know the equation of the ‘angent in case the curve is defined
analytically does not present any difficulty and is left to the reader
as an easy exercise.

§ 3. The osculating plane to a curve. Suppose y is a curve and
that P is a point on y, and suppose « is a plane passing through the
point P. We denote the distance of an arbitrary point Q on the curve
from the plane « by % and the distance of this point from the point
P by d (see Fig. 4).

Tig. 4

We shall call the plane « the osculating plane to the curve y at the
point P if the ratio 2/d? — O when Q — P.

THEOREM. A regular (at least twice continuously differentiable)
curve y has an osculating plane at every point. In this connection, the
osculating plane is either unique ov any plane containing the tangent to
the curve is an osculating plane. If r = r(t) is the equution of the curve y
then the osculating plane at the potnt corresponding to the value t of the
parameter, is parallel to the vectors v'(t) and r''(t).

ProoF. Suppose « is an osculating plane to the curve y at the
point P, corresponding to the value ¢ of the parameter. We shall
denotc the unit normal vector to the plane o by ¢. The distance of
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the point Q, corresponding to the value ¢ + Af of the parameter,
from the plane « is

h = |e-(r(t + At) — r(2))].
The distance from this point to P is

d = |r(t + A8) — #(f)|.

We have
. " (t) ‘
g e+ 4y — )] e-(roar + L a+ uan) )
o= (r(t + 48) — r(1)2 (' () At + ead8)? =
ie-r'(t) er"(t) ,
B 20 + e2 '

Since h/d? — 0, €1/, ea” — 0 as A¢ -0, and |#'(¢)| # O, we have
e-r'(t) =0, e-r”(t) = 0. Thus, if the osculating plane exists, the
vectors #’'(¢) and 7''(¢) are parallel to it.

It is not difficult to verify the fact that the osculating plane
always exists. To this end, we take the plane «, parallel to the
vectors 7'(f) and 7" (f) (we consider any plane to be parallel to the
zero vector). Then e-7'(f) = ¢-7"'(f) = O and, consequently, A/d2 =
__ler]
e

Thus, the osculating plane exists at every point on the curve.
Obviously, the osculating plane, being parallel to the vectors #'(¢)
and 7”(¢), will be unique if the vectors #'(¢) and »"'(f) are not paral-
lel. But if these vectors are parallel (or the vector #”'(f) = 0), then
any plane, drawn through the tangent to the curve, will be an
osculating plane.

We note that the osculating planc was defined purely geometrical-
ly, without recourse to any definite method of analytic definition.
Therefore, the fact that the vectors 7" and 7" are parallel expresses
some geometric property of the curve.

We shall now derive the equation of the osculating plane. Suppose
r = r(¢) is the vector equation of the curve and that ¢ is the value of
the parameter which corresponds to the point P on the curve.
Suppose #'(t) and 7"(f) are vectors which are not parallel at the
point P. Then #'(f) X 7’(t) will be the normal vector to the oscu-

as 4t - 0.
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lating plane. If # denotes the position vector of any point in the
osculating plane at the point P, then the vectors # — 7(¢) and
7'(t) X r""(t) are orthogonal. It follows that the equation of the
osculating plane is
(F — 1) (") X 7)) = 0
or
F—r), @), @) =0.

In the casc when the curve is defined parametrically
x=x), y=y0), ==z,

we obtain from this equation the equation of the osculating plane
in the form
g—xlt), §—yl), F—a)
x'(8) y'(t) 2’ [=0.
20 Yy 2

The derivation of the equation of the osculating plane when the
curve is defined analytically in other forms is left to the reader.

Every straight line passing through a point on the curve perpen-
dicular to the tangent is called a normal to the curve. When the
osculating plane is unique, two special straight lines are chosen
from among these lines; they are the principal normal which is the
normal lying in the osculating plane and the dinormal which is the
normal perpendicular to the osculating plane.

Since the equations of the tangent and of the osculating plane are
known, the derivation of the equations of the principal normal and
binormal does not present any difficulty and is left to the student as
an exercise.

§ 4. Contact of curves. Suppose y
and y' are elementary curves having a
common point 0. We choose the point
P on the curve »’ and denote its
distance from the curve y by 4 and
we denote the distance from P to the
point O by 4 (see Fig. 5).

We shall say that the curve " has
contact of order n with the curvey at
the point O if the ratio 4/d” -0 as
P > 0. Fig. 5
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Suppose y and y’ are general curves having the common point O.
We shall say that the curve 9’ has contact of order # with the
curve y at the point O if an elementary neighborhood of the point O
on the curve y” has contact of order » with an elementary neigh-
borhood of the curve y.

THEOREM. Supposey andy’ are regular plane curves, that p(x, y)=0
1s the equation of the curve y, and that x = x(t), y = y(¢) is the equation
of the curve y'. Suppose pz2 + @2 = O at the pornt O(xg, Yo).

Then a necessary and sufficient condition that the curve y' have
contact of order n with the curve y at the potnt O is that the conditions

satisfied for the value of ¢ corresponding to the point O.

PRrROOF. Suppose 7 is an elementary curve which is a neighborhood
of the point O on the curve y. Suppose M(x, y) is any point in the
%, y-plane, which is near the point O. The distance of the point M
from the curve 7 is the greatest lower bound of the distances of
points on the curve to the point M. If the point M is sufficiently
close to O, this greatest lower bound is attained for some point
M (%, ¥) on the curve. We shall show this.

Since the point O belongs to the curve y, there exists an e > 0
such that all the points in the plane which are at a distance not
greater than e from the point O and which satisfy the equation
@(x, y) = O, belong to the curve y.

Suppose the point M is at a distance less than £/2 from the point
0. Let M, be a sequence of points on the curve y whose distances
from M tend to the distance of the point M from the curve y. The
points M ,, form a bounded sequence (their distances from M arc less
than ¢/2), and therefore this scquence contains a convergent sub-
sequence. Without loss of generality, we may assumec that the
sequence M, itself converges to some point M (%, 7). In virtuc of
the continuity of the function ¢(x, y) in a neighborhood of the point
O, the point M satisfies the equation ¢(x,y) = 0. From this it
follows that the point M belongs to the curve y. Thus, if the point
M is sufficiently close to O, the greatest lower bound of the distances
of the points on the curve y from the point M is attained for some
point M (%, %) on the curve 7.

We shall show that the segment M M is directed along the normal

Pogorelov, Diff. GGeometry.
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to the curve y at the point M. In fact, suppose #(s) is the position
vector of a point on the curve ¥, and that  is the position vector
of the point M. The distance of the point M from points on the curve

equals V/(7(s) — m)2. For s, corresponding to the minimum of this
distance, we have

d Sl B —
E\/(r(s) —m)2 =0,

and hence (7(s) — m)-7'(s) = O which means that the vector M M is
directed along the normal to the curve y at the point M.

Suppose &, 5 are the direction cosines of the straight line M.
The coordinates of the point M can be expressed in the following
way in terms of the coordinates of the point M:

E=x+¢&h, §=y+h

where % is the distance of the point M from the curve y.
The coordinates %, ¥ of the point M, as points on the curves y,
satisfy the equation ¢(x, y) = 0. Thus, we have

@(x + &b,y + nh) = 0.
If follows that

9(%,¥) + Ehpa(, y) + nhoy(x, y) + B2R =0,

where R is bounded in a neighborhood of the point O(xg, yo).

As x — xg, ¥ = yo the expression &pz + 7@y tends to a limit,
which is different from zero, inasmuch as it represents the scalar
product of two vectors with coordinates &, # and ¢z, ¢y Which in the
limit are different from zero and directed along the normal to the

curve y at the point O. Thus, the quantity 4 = - B + h2R’
§pz + NPy

has order ¢ as M — O.
Suppose M lies on the curve " and corresponds to the value ¢ of
the parameter. Then, its distance from O, equal to

[r(t) — r(to)] = | — to)(r'(fo) + &),
is of order |t — #9| when M is sufficiently close to O. From this it
follows that a neccessary and sufficient condition that the curve y’
have contact of order » with the curve y at the point O is that
p(x(), ¥(t))
{t — to)™

—
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as ¢ — tp. But this means that all the terms in the expansion of the
function ¢(x(¢), ¥(#)) involving powers of (¢ — #g) up to the n-th
inclusive, equal zero.

This completes the proof of the thcorem.

EXAMPLE. Suppose ¥,,a,,....0n 15 a given family of curves,
depending on »# parameters ay, «z, * - *, an, defined by the equations
p(*, y, a1, -+, ap) = 0, and that the curve y is defined by the
equations ¥ = x(¢), y = ¥(f).

Find a curve among this family of curves with which the curve y
has contact of order # — 1 at the given point O.

In agreement with the theorem we proved above, if the curve y
has contact of order » — 1 with the curve y,,,...,,, at the point O,

then
0 d 0 dn—=1) 0
P=0gP=0 1 s

for the value of ¢ corresponding to the point O.
From this system we find the values of the parameters a, a2, - - -,
ap, for which the curve y has the indicated property.

§ 5. Envelope of a family of curves, depending on a para-
meter. Suppose S{y,}is a family of smooth curves on a surface,
depending on a parameter «. y
A smooth curve y is called an ¢
envelope of the family S if a)
for every point on the curvey
it is possible to give a curve
v, of the family which is ’
tangent to the curve y at this
point, b) for every curve y,
of the family it is possible to
give a point on the curve y at
which the curve y, is tangent Fig. 6
to y, ¢) no curve of the family
has a segment in common with the curve » (Fig. 6).

ExXAMPLE. A smooth curve not having rectilinear arcs is the
envelope of its tangents.

The following theorem solves, to a known degree, the problem of
finding the envelope.
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THEOREM. Suppose the curves y, of a family S are given by the
equations @(x,y, a) = 0, where @ is continuous and continuously
differentiable for all its arguments.

Then the envelope of the family S is given by the equations

P(x, ¥, a) =0, @u(x, 9,0 =0

in the sense that for every ;‘)oirft (%, v) of the envelope one can find an «
such that both equations ¢ = 0 and ¢, = 0 will be satisfied by the
system of values x, y, a.

The proof of this theorem in the form we have just formulated it,
although carried out by elementary methods of analysis, is obtain-
ed in a rather cumbersome fashion. In this connection, in order
to simplify the discussion, we shall make some additional as-
sumptions about thc nature of the envcloping of the curve by
curves of the family. Namely, we shall assume that for every point
P of the curve y it is possible to give an interval 4p of variation of
the parameter « such that:

1) For every point Q of the curve y, near P, there exists only oue
curve of the family with parameter «, belonging to 4p, and tangent
to the curve at the point Q;

2) If » = r(f) is any smooth parametrization of the curve y in
a neighborhood of the point P and y, is a curve of the family
tangent to y at the point (f) (where «(t) belongs to 4p), then «(f) is a
smooth function of ¢.

Under such additional hypotheses on the nature of the enveloping
of the curve y by curves of the family, the proof of the theorem is
rather simple.

Since the curve y is tangent to the y, of the family at the point
(¢), the following identity holds:

@(x(8), ¥(), «(t)) = 0.

Differentiating this identity with respect to {, we obtain

P2%" + @y’ + e’ = 0.

Since the curves y and y,) are tangent at the point (), we have
pzx’ + @yy" = 0. Therefore, we have g,a' = 0.

We shall assume that ¢, 7~ 0 at the point P. Then ¢, £ 0 also in
some ncighborhood of the point P, and hence ' = 0 in this neigh-
borhood, i.e. «(f) = constant = ¢. But this means that the envelope
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y has a common segment with the curve y,, which is impossible.
Thus, ¢, = 0 at the point P. This completes the proof of the theo-
rem.

REMARK. The system of cquations

¢y, a) =0, @ux,y,a) =0

can, in general, also be satisfied by curves which are not envelopes.
For example, the equation of the envelope to the family of curves

(v — a8 + (7 — % — 3x — o)y — @) =0,

is satisfied by the line x = y, which however is not an envelopec.
This straight line consists of nodal points of the curves of the family
(Fig. 7).

Tig. 7

Exercises FOR CHAPTER 11

1. Write the equations of the a) tangent, b) osculating plane,
c) normal plane, d) principal normal, ¢) binormal to the helix
x=cost, y=sint, z=1
at the point (1, 0, 0).

. x—1 y z
ANSWER: a) equation of the tangent: 5 =T 71"
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b) equation of the osculating plane: y — z = 0;
c) equation of the normal plane: y 4+ z = 0;
d) equation of the principal normal: y = z = 0;
—1 z
e) equation of the binormal: ad g = % = .
2. Write the equation of thc tangent to the curve defined by the
equations

x2+y2+22_—_—1‘ x2+y2=x
at the point (0,

1)
y z—1
1 0o

3. Find the equation of the parabola of the form y=x2+4ax+4b
which is tangent to the circle 2 4 y2 = 2 at the point (1, 1).

ANSWER: y = #2 — 3x 4 3.

4. Find the curve y = y(x) if it is known that the length of the
segment of the tangent between the point of tangency and the
point of intersection of the tangent with the x-axis is constant and
equal to a.

ANSWER: Tractrix:

x
ANSWER: F =

a—~\/(/12—y'a

c+x=aln -______J[_\/az_yz
y

5. Segments of the same length arc marked off on the binor-
mals of a simple helix. Find the equation of the curve generated
by the endpoints of these scgments.

ANSwWER: Helix.

6. What is the angle at which the curves

xy =c1, x¥%2—y2=cg
intersect ?
ANSWER: =/2.
7. If the curve y in a plane intersects the curves of the family

¢(x: y) = constant (¢z2 + @2 #0)
orthogonally, then it satisfies the equation
dx dy

Pz Py

Prove this assertion.
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8. Find the family of curves which intersect all circles passing
through two given points in the plane orthogonally.

ANSWER: A family of circles.

9. Find the equation of the circles having contact of the second
order with the parabola y = 2 at its vertex.

ANSWER: %2 + y2 =y,

10. Find the envelope of the family of straight lines which form a
triangle XOY of area 242 with the coordinates axes.

ANSWER: The part of the equilateral hyperbola xy = a2 which
lies in the angle XOY.

11. Find the envelope of the family of straight lines on which the
coordinate axes cut off a segment of constant length a.

ANSWER: Astroid:

l"l% + |y|2/’ — q%h.

12. Find the envelope of the trajectories of a material point
ejected from the origin of coordinates with initial velocity v,.
ANSWER: The trajectory parabola

gx? Vo2
_ - + -
21)03 2g

y:

where g is the acceleration due to gravity.

13. Find thc envelope of light rays emanating from the origin of
the coordinate system after their reflexion from the circle
22 + y2 = 2ax.

ANSWER: The Pascal limagon:

4a2 16
(x2+y2_2ax)2+%(x2+y2_. 9ax>=0

ProBLEMS AND THEOREMS FOR CHAPTER 11

1. Suppose y is a curve and that P is a point on y, and suppose g
is a straight line passing through the two distinct points R and S on
the curve. We say that the curve has a tangent at the point P in the
strong sense if the straight lines g converge to some straight line
gpasR, S - P.

Prove that if the curve is smooth, then it has a tangent in the
strong sense at every point, and this tangent coincides with the
tangent in the sense of the usual definition, given in § 2.
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If the curve has a tangent in the strong sense at every point, then
the curve is smooth.

2. Prove that if the tangents to a smooth curve passthrough a
common point, then the curve is a segment of a straight line, or half-
line, or an entire line.

3. Prove that the tangents to the helix

x = a cos wt, 'y=asinwt, z2=0t

are inclined at a constant angle to the x, y-plane. Show that the
principal normals to the helix intersect the z-axis.

4. An inversion is a transformation under which corresponding
points are located on the same half-line emanating from some fixed
point S (called the center of inversion), and the product of their
distances from S is constant. Prove that the angle between curves
remains invariant under an inversion.

5. Prove that if the tangents to a curve are parallel to some plane,
then the curve is a plane curve.

6. What is the condition that the straight line g:

ar(t)x + b1(t)y + c1(t)z + d1(t) = O,
as()x + ba(t)y + ca(f)z + dao(t) = O

be tangent to some curve

TFind this curve.
7. Write the equation of the osculating plane to the curve defined
by the equations

p*, 5,2 =0, y(x,9,2 =0

at the point (%o, Y0, 2o).

8. Suppose y is a curve and that P is a point on ¥; let « be a plane
passing through distinct points @, R and S on the curve. We say
that the curve y has an osculating plane at the point P in the strong
sense if the planes « tend to some plane ap as Q, R, S — P.

Prove that if a regular (i.e. twice continuously differentiable)
curve has a unique osculating plane at the point P in the usual
sense (§ 3), then it has an osculating plane at this point in the strong
sense and they coincide.

9. Reconstruct the curve x = x(t), y = y(f), z = z(t) knowing that
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its osculating planes are
A(tyx + B(t)y + C(t)z + D(t) = .
10. Prove that if all the osculating planes of a curve pass through
a common point, then the curve is a plane curve.
11. Prove that a necessary and sufficient condition that the
curve x = x(t), ¥y = ¥(t), z = 2(f) be a plane curve is that

’ ’ ’

x Y z
(X4 H 1

x y 271 =0.

,vlll ylll zlll

12. Prove that the contact property of curves is mutual, i.e. if the
smooth curve y; has contact of order #» with the smooth curve ys
then the curve ys has contact of order #» with the curve y; at the
same point.

Show by an example that the smoothness requirement is essential.

13. Assume the curves y1, 2, ¥3 have a common point P at which
the curves y; and y3g, ¥2 and y3 have contact of order ». Then the
curves y1 and y3 also have contact of order # at the point P.

14. Prove that if a curve has contact of order three with its
osculating plane at every point, then this curve is a plane curve.

15. A projective correspondence

_artp
R
is established between the points of the x and y coordinate axes.
Prove that the family of straight lines joining corresponding
points on the axes, envelope a second degree curve.

16. Prove that if a one parameter family of curves in the plane is
given by the equations

¢ ¥, a,8) =0, f(a,f) =0,
where f,% + fg% # O, then the envelope of this family satisfics the
equations
=0, f=0, ¢, +4,=0, pg+4fg=0

in the sense that for every point (x, y) of the envelope, one can find
«, f and A which are such that together with x and y they satisfy the
above four equations.

The equation of the envelope in the implicit form can be obtained
by eliminating «, #, 2 from these four equations.

ad — fy #0



CHAPTER III

FUNDAMENTAL CONCEPTS FOR CURVES WHICH
ARE RELATED TO THE CONCEPTS OF
CURVATURE AND TORSION

§ 1. Concept of arc length of a curve. Suppose y is an arbitrary
curve. In § 3 of Chapter I we showed that y is the image of an open
interval g or of a circumference %2 under a continuous and locally
one-to-one mapping ¢ into space.

A segment of the curve y is the image of an arbitrary closed seg-
ment 4, belonging to the open interval g or to the arc « of the circum-
ference % under the mapping ¢. The endpoints of the segment of the
curve are the images of the endpoints of the open interval 4 or the
endpoints of the arc « of the circumference.

The concept of a segment of a curve thus introduced does not
depend on the mapping in the sense that if the mappings ¢;1 and g2
of the open interval g or of the circumference % define the same
curve y then the set of segments of the curve defined by the map-
pings g1 and ¢z coincide. We shall prove this.

Suppose the mappings @1 and g3 of the open interval g define the
same curve y. In agreement with the definition given in § 3 of
Chapter I, this means that there exists a one-to-one and bicontinu-
ous correspondence y between the points of the open interval g for
which the images of corresponding points under the mappings ¢1
and g3 coincide.

Suppose 41(a < ¢t < b) is any closed interval belonging to g and
that @1(41) is its image under the mapping ¢1. We most prove the
existence of a segment A2, whose image is ga(42) under the mapping
@2 coincides with ¢;1(41).

We shall denote the image of the segment 4; under the mapping
of the open interval g onto itself by 4. We shall show that 4" is a
closed interval. In fact, the function y(¢) which effects the mapping
of the open interval g onto itself, is continuous on the segment
di(a <t < b). It follows from this that this function attains its
maximum M, its minimum  and assumes all intermediate values
on the segment 4;. But this means that 4’ is the closed interval
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m <t < M. The images of the closed segments 4; and 4" under the
mappings @1 and ¢z respectively yield the same segment of the
curve. This completes the proof of our assertion.

The set of points on a segment of a curve can be ordered in the
following way. Suppose ¢(4), ¢(B), ¢(C) are three points on a
segment of the curve. We shall say that the point ¢(B) lies between
the points ¢(A4) and ¢(C) if the points on the segment 4 or the arc of
the circumference corresponding to them are in this relation.

It follows from the preceding discussion on the independence of
the concept of segment of the mapping ¢ which determines the
curve y that the “betweenness’ relation for points of the segment
is also indcpendent of ¢. In fact, a continuous function y(#) which
assumes distinct values for distinct ¢ is a monotonic function. It
follows from this that if A’, B’, C’ are points of the segment A’
corresponding to 4, B, C, then B’ lies between A’ and C’. But this
means that the mappings @1 and ¢z of the open interval g, which
define the same curve, also define the same ““betweenness’ relation-
ship for the points of its segment.

In conclusion we note that the property of points of being the end-
points of a segment of a curve is also independent of the mapping ¢,
which determines the curve. Infact, if the curve y is defined with the
aid of ¢1 then the endpoints of the segment @;1(4:1) are the images of
the endpoints of the segment 4, under the mapping ¢, ; if the curve
y is defined by means of @z then the endpoints of the segment
@1(41) = @2(4’) are the images of the endpoints of the segment A4’
under the mapping @2. But in virtue of the monotonicity of the
function y(f) the endpoints of the segments 4; and 4’ correspond to
each other under the mapping
v and the images of corre- -
sponding points of the segments Y
4y and A’ coincide under the Aj
mappings ¢1 and @z. This is
what we were required to prove.

B

We now define the concept A
of arc length of a segment of a
curve.
Suppose 7 is a segment of 14
the curve y and let 4 and B Fig. 8

be its endpoints. We choose
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the points A9 = 4, Ay, -+, An = B, on the segment #, procecding
from A to Bin the sense that the point A; lies between 4;_; and
A¢+1. We join successive points 4;and 4441 by means of rectilinear
segments. We then obtain the polygonal arc I' inscribed in the
segment ¥ of the curve (see Iig. 8).

We shall say that the segment  of the curve y is rectifrable if the
lengths of the polygonal arcs I' are uniformly bounded. The least
upper bound of the lengths of the polygonal arcs I, inscribed in the
segment 7 of the curve, will be called the arc length, or simply the
arc, of this segment. We shall say that the curve y is rectifiable if
each of its segments is rectifiable. The length of the arc will be the
least upper bound of the arc lengths of its segments.

We shall show that arc length so introduced possesses the usual
properties, namely:

1. If the segment A’B” of the curve y is a subset of the segment
AB and if the segment AB is rectifiable, then the segment A’'B’ is
also rectifiable and the length of its arc s(4'B’) is less than the
arc length s(4B) of the segment AB.

2. If C is a point on the segment AB of the curve y which is
distinct from both 4 and B, and the segments AC and CB arc
rectifiable, then the segment AB is also rectifiable, and

s(AC) + s(CB) = s(4B).

PRroOF. Since the segment 4A’B’ is a subset of the segment AB,
then one of the points 4’ and B’ (for definiteness, let us say it is
the point A') is not an
endpoint of the segment
AB. Suppose [ is an
arbitrary polygonal arc,
inscribed in the segment
A’'B" of the curve, and
suppose C is an arbitrary
point of the segment 44,
which is geometrically

Fig. 9 distinct from 4 and 4’

(Fig. 9). Adding the new

vertices A, C and B to the polygonal arc I, we obtain the polygonal
arc I' inscribed in the segment A B of the curve y. The length of the
polygonal arc I'is greater than the length of I by at least the sum of
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the lengths of the links AC and CA’. Since the polygonal arc I was
taken arbitrarily, this means that the lengths of the polygonal arcs
I are uniformly bounded and, consequently, the segment 4'B’ of
the curve y is rectifiable. The length of this segment, obviously, is
less than the length of the segment AB of the curve by at least the
sum of the lengths of the links AC and CA4".

We shall now prove the second property. Suppose I'is an arbitrary
polygonal arc inscribed in the scgment 4B of the curve. We add the
vertex C to it. The polygonal arc I' thus obtaincd has length greater
than or equal to that of the polygonal arc I". This polygonal arc
consists of the polygonal arcs I and I inscribed in the segments
AC and CB of the curve y. It follows from this that the segment AB
is rectifiable and that

s(AC) + s(CB) = s(AB).

Now suppose I” and I"" arc arbitrary polygonal arcs inscribed in
the segments AC respectively CB of the curve. Then the polygonal
arc I', consisting of the polygonal arcs I and I, will be inscribed
in the segment 4B of the curve y. It follows from this that

s(AC) 4 s(CB) < s(AB).
Combining this with the preccding inequality we obtain
s(4C) + s(CB) = s(AB),

which was to be proved.

§ 2. Arclength of a smooth curve. Natural parametrization
of a curve.

THEOREM. A smooth curve y is rectifiable. If v = »(t) is its smooth
parametrization and $(a <t < b) is a segment of the curve y then the
length of this segment 1s

b
s(7) =af |7"(¢)]dt.

Proor. Suppose I' is an arbitrary polygonal arc inscribed in the
segment ¥ of the curve y. Let {1 = a, 3, * - -, {41 = b be the values
of the parameter ¢ corresponding to its vertices. The length of the
link of the polygonal arc joining the vertices #; and £41 equals
|7(t+1) — 7(t;)]. Therefore the length of the entire polygonal arc is

s(IN) = ZTey [7(t41) — r{E)l.
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We now estimate the length of the polygonal arc I. We have

[7(er1) — r(a)] < |%(bes1) — 28] + Y1) — y()| +
+ |2{tir1) — 2(t)] = (Grr — L) (| %' B)] + |y (3)] + |2/ (3"))),

where &/, 9/, &'’ lic between ¢; and #;4,. Since the derivatives x’(f),
¥'(¢), Z’() are bounded by some constant M on the closed interval
a<t<b, and

Sl —t)=b—a,
we have
s(I') < 3M (b — a).

Thus, the lengths of the polygonal arcs I' inscribed in the segment §
of the curve y, arc uniformly bounded and, consequently, the
segment 7 is rectifiable. Since the segment % was chosen arbitrarily,
we conclude the curve y is also rectifiable.

REMARK. In the proof of the rectifiability of the segment ¥ of the
curve we used the fact that there existed a smooth parametrization
for every segment, whereas the smoothness of the curve, by defi-
nition, assumes only the existence of such a parametrization only in
a neighborhood of each point of the curve. In order not to use
only one smooth parametrization for the entire segment 7, we pro-
ceed in the following manner.

We shall start with any parametrization » = 7(f) of the curve y.
Suppose d < ¢ < b is a segment of y. We decompose the segment y

6 . -
by means of the points @ + & z

(k=12 -, n—1)inton

segments. If » is sufficiently large, each of these segments permits a
smooth parametrization. In fact, let us assume the contrary.
Suppose a segment f,'t,”" can be found for every # which does
not permit a smooth parametrization. The sequence of segments
tn'ty’’ contains a subsequence of segments whose endpoints ¢," and
tn'’ converge, obviously to a common limit #o. But the point {p has a
neighborhood which permits a smooth parametrization. IFor suf-
ficiently large » the segment £,'t,"’ lies in this neighborhood and,
consequently, it permits a smooth parametrization. We have thus
arrived at a contradiction. Thus, for sufficiently large »# the segment
7 will be decomposed into n segments, each of which permits a
smooth parametrization and hence it is rectifiable by what was
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proved above. But then, as was proved in the preceding section, the
segment ¥ is also rectifiable.

We shall find the length of the segment #, which permits a smooth
parametrization 7 = 7(t).

We inscribe the polygonal arc I"into the segment §, satisfying the
following conditions: 1) the length of the polygonal arc I' differs
from the arc length of the segment $ by at most ¢; 2) for all 7
|ts+1 — £| < 0. Here € and d are arbitrary positive numbers. The
existence of such a polygonal arc is quite obvious. In fact, there exists
a polygonal arc I" satisfying the first condition by the definition of
the arc length of the segment of a curve. Adding new vertices to it,
we do not invalidate the first condition. But at the same time the
addition of new vertices helps us satisfy the second condition also.

We now estimate the length of an arbitrary link of the polygonal
arc. We have

[7(tiv1) — 7(t)| = [(x(ts+1) — x(t))er + (Y(ter1) — y(t))ez +
+ (3(tir1) — z(te))ea| = (birr — bo)|x"(Bi")er + y' (B4 )ea+2" (84" )es| =
(ta1 — )| (*' (&) + e')er + (V'() + e )ea + (2'(t) + &0'"")es|.

In virtue of the uniform continuity of the functions x'(¢), ¥'(¢), 2'(f)
on the closed interval @ < ¢ < b the quantities ¢;’, &', &’’’ are less
than some £(8), where &(8) —> O as 6 — 0. Therefore

[r(tie1) — r(t)| = (b1 — t)|7'(8)| 4 (bae1 — E)mu,

where |7;| is less than some &(6) which tends to zero as 6 — 0.
Now suppose that I', is a sequence of polygonal arcs inscribed in
the segment ¥, for which

s(I'y) — s() and 6, — 0.
The length of the polygonal arc is
s(M) = Z (birr — &) [7'()] + Z (berr — L.

As n — oo,
b
2 (1 — B) [P'(B)| = S 17" (6)|dt,

and Y ({441 — t)n¢ > O inasmuch as X ({41 — f) = b — a, and
[n4| < &(8n).
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Thus the arc length of the segment ¥ of the curve y is

b
s(7) = J1r'(®)at.

This completes the proof of the theorcm.

Suppose y is a rectifiable curve and let » = 7(f) be any one of its
parametrizations. Suppose s(f) is the arc length of the segment ¢yt
of the curve y. We shall define the function ¢(t) by means of the
conditions

alt) = s@t) iftp <,
a(t) = — s(t) if to > ¢;
a(te) = 0.

The function o(#) is strictly monotonic. Therefore ¢ can be taken as
the parameter on the curve. We shall call this parametrization the
natural parametrization.

THEOREM. The natural parametrization of a regular (k-times
differentiable, analytic) curve without singular points is regular (k-
times differentiable respectively analytic). If r = #(o) is the natural
parametrization of the curve then |v'(o)] = 1.

PRrROOF. Suppose 7 = #(¢) is any regular paramctrization of the
curve y in a neighborhood of an arbitrary point corresponding to
the valuc o1 of the parameter. For each segment belonging to this
neighborhood we have

2
o — oy = [ VF2(t)dt.
171

Since do/dt = V#2(t) > 0and #(f) is a k-times differentiable function
of ¢, ¢ is a k-times differentiable function of ¢. But for ¢ close to oy,
7(o) = #(t(0)). It follows from this that 7(s) is a regular (k-times
differentiable) function and

dr(o) dr(t) dt dF(t) 1
do  dt do  dt ' dF (1)

Consequently, {7'(c)| = 1.

This concludes the proof of the theorem.

COoROLLARY. A regular (k-times differentiable, analytic) curve
permits a regular (k-times differentiable respectively analytic) para-
metrization “‘in the large’’, i.e. for the enlire curve.
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Such a parametrization is the natural parametrization r(o) and also
any parametrization obtained from it by means of a regular transfor-
mation of the parameter o = @(t), where @(t) is a regular (vespectively
analytic) function of ¢ which satisfies the condition that ¢'(f) # O.

To conclude this section, we shall give the formulas for arc length
of a regular curve for two different ways of analytically determining
the curve.

1. For a curve defined by the equations

x=zx(t), y=y{), z=20).
the arc length is
t2 o
s(tu to) = [P (Oldt = [ Va2 1y ¥ 22 dt.
{1 21

2. A curve defined by the equations

y =y, 2=z
has arc length
& S
s(%1, xg) = fz\/l + y'2 + 2'2dx.
Ead

For plane curves, lying in the x, y-plane, we must set 2’ =0 in
these two formulas.

§ 3. Curvature of a curve. Suppose P is an arbitrary point on
the regular curve y and Q is a point on y near P. We denote the angle
between the tangents drawn to
the curve at Pand Q by A% and
the arc length of the segment
PQ of the curve by 4s (Fig. 10).

The curvature of a curve y at
the point P is the limit of the
ratio 49/4s as the point Q ap-
proaches P.

Then the following theorem
holds.

THEOREM. A regular (twice
continuously differentiable)
curve has a definite curvature
ki at each of its points. If Fig. 10

Pogorelov, Diff. Geometry.
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r = 7(s) is the natural parametrization of the curve, then
ko= |r"(s)].

Suppose the values s and s + 4s of the parameter correspond to
the points P and Q. The angle 4% is equal to the angle between the
unit tangent vectors 7(s} = 7'(s) and 7(s -+ 4s) = 7'(s + 4s).

Since the vectors 7(s) and (s + 4s) are unit vectors and form the

49
angle 449, |7(s + 4s) — 7(s)| = 2sin 5 Thercefore

L L,
s+ 4s) —=(s)] 22 TR 4
As T 4s T A 4s

2

Noting that 4¢ — 0 as A4s — 0 and passing to the limit, we obtain
|7’ (s)| = k1.

This completes the proof of the theorem.

Suppose the curvature does not vanish at a given point on a
curve. Consider the vector n = (1/k1)7"'(s). The vector # is a unit
vector and lies in the osculating plane of the curve (§ 3, Chapter II).
Moreover, this vector is perpendicular to the tangent vector 7,
so that v2 =1 and, consequently 7-7" = 7-nk1 = 0. Thus, this
vector is directed along the principal normal to the curve. Obvi-
ously, the direction of the vector #» does not change if the initial
point of the arc s or the direction of traversing s is changed. In the
sequel, when we mention the unit vector on the principal normal to
the curve, we shall have in mind the vector #.

Obviously, the vector + X n = b is directed along the binormal
of the curve. This vector will be called the unit binormal vector of
the curve.

We shall find an expression for the curvature of a curve in the
case of an arbitrary paramectric representation. Suppose the curve
is given by the vector equation r = 7(f). We shall express the second
derivative of the vector function 7 with respect to the arc s in terms
of the derivatives with respect to ¢£. We have

v = rgs'.

It follows that
7/2 — 5,2
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and consequently
vy = 77,
Differentiating this equality once more with respect to £, we obtain
7558 = r”/\/;72 - (r'-r”)r’/(\/ﬁ)fi.

Squaring both sides of this equality and noting that s'2 = #'2, we
have
rllzrlz . rl.rll 2
i i
(r'2)3

or, what amounts to the same thing,
(7’ X rll)z

ki? = ('2)3

From this we obtain that the curvature of a curve given by the
cquations

x=2x(), y=y{), 2=z
is defined by

xll yll
1 ’

Xy

2 yll zll 2
’ ’

tly 2|+
T yT 4 s

k12 =

If the curve is a plane curve lying in the x, y-plane,

b Y =y

(x’z + y’2)3
If the plane curve is given by the equation y = y(x),

"y
2 ¥

(1+y?3

REMARK. The curvature of a curve is, by definition, nonnegative.
For plane curves, it is convenient in many cases to choose the sign
of curvaturc so that in some cases it is positive and in others
negative. The tangent vector #'(t) of the curve rotates as it moves
along the curve in the direction of increasing ¢. Depending on the
direction of rotation of the vector #'(f) the curvature is considered
positive or negative. If we determinc the sign of the curvature of a

k
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plane curve by this condition, then we obtain the following formulas

for it:
xllyl . ylle xllyl - yllxl
— T [ A—

(a2 4 y2)h 0 (x'2 4 y'2)%
In particular, if the curve is given in the form y = y(x),
R=y"[(0 + 99" or k= —y"[(1 +y?)*h

In conclusion, we find all the curves having curvature zero at all

its points. We have
ki=|"(s) =0

It follows that 7"'(s) = O and, consequently, 7(s) = as + b, where
a and b are constant vectors.

Thus, a curve having curvature everywhere equal to zero is
either a straight line or an open interval on a straight line. The
converse is also true.

§ 4. Torsion of a curve. Suppose P is an arbitrary point on the
curve y and Q is a point on y near P. We denote the angle between
the osculating planes to the curve at the points P and Q by 44 and
we denote the length of the segment PQ on the curve by As. The
absolute torsion |ka| of the curve y at the point P is understood to be
the limit of the ratio 4¢/4s as Q — P.

THEOREM. A regular (three-times continuously differentiable) curve
has a definite absolute torsion |ka| at every point where the curvature is
different from zero. If r = r(s) is the natural parametrization of the

curve, then
k2| = [(r'?"'7""")|[Ra2.

ProorF. If the curvature of the curve y at the point P is different
from zero, then by continuity it is different from zero at all points
sufficiently close to P. At every point where the curvature differs
from zero, the vectors #'(s) and 7'(s) are different from zero and are
not parallel. Therefore, a definite osculating plane exists at each
point Q near P.

Suppose b(s) and b(s + 4s) are unit binormal vectors at the
points P and Q on the curve y. The angle 49 is equal to the angle
between the vectors b(s) and b(s + 4s).

Since the vectors b(s) and &(s + 4s) are unit vectors and form
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A9
the angle 49, |b(s + As) — b(s)] = 2sin 5 Therefore

2 sin Q sin f’ﬂ
|b(s + As) — b(s)| 2 2 Af
T as T A T Tas as
-

I'rom this we obtain, passing to the limit as As — 0, that
|ka| = 107].

The vector &’ is perpendicular to b since b'-b = (3b2)’ = 0. It is
not difficult to see that &’ is also perpendicular to 7.
In fact,
V=(FXxn)=7Xn+7Xn.

But +'||n. Therefore, 4" = v X »’, whence it follows that &' is
perpendicular to 7. Thus, the vector & is parallel to the vector
and, consequently,

|ke| = |b" n|.

If we set n = (1/k)r"" and b =+’ X r”/k; into this last cquation,
we obtain

\Ba] = [(r7"'7"")| R,

This completes the proof of the theorcm.

We shall now define the forsion of a curve.

It follows from the fact that the vectors 4" and # are paraliel that
the osculating plane to the curve rotates about the tangent to the
curve as it moves along the curve in the direction of increasing s. In
this connection, we define the torsion of a curve by means of the
equation

ko = 4 |ko|

and we shall take the sign () if the rotation of the tangent plane
occurs in the direction from b to #, and (—) if the rotation occurs
in the direction from #» to b. If we define the torsion of a curve in
this way, we shall have 22 = b"-n or

kz —_ (rlrllrlll)/klz'

We shall now find the expression for the torsion of a curve in the
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case when it is defined by an arbitrary regular parametrization
r = r(f). We have

'75 — rlil, 733 — 7”t’2 + T’t”,
7’353 — r/lltla + {1", 7N}’

where {#’, 7'} is a linear combination of the vectors 7" and »". If we
substitute the expressions for 7, 7s5, and 75 just found into the
formula for %42 and note that #2 = 1/7'2, we obtain

kz —_ (71711’,/!/)/(7/ X 711)2'

In concluding this section we shall find all the curves for which
the torsion vanishes at every point. We have k3 = b"-n = 0O, but
as we saw, b'-t = 0 and &-b = 0. Consequently, ' =0, b = by =
constant vector.

The vectors 7 and b are perpendicular. Therefore #'-bp = 0. It
follows that (r(s) — 7p)-bp = O, which means that the curve lies in
the plane given by the vector equation (» — 7p)-bp = O.

Thus, as curve whose torsion vanishes at every point is a plane
curve. The converse assertion is also truc.

§ 5. The Frenet formulas. Natural equations of a curve.

Three half-lines, emanating from a point on the curve and having
the directions of the vectors 7, #, b are edges of a trihedron. This
trihedron is called the natural trihedron.

In order to investigate the properties of the curve in a neighbor-
hood of an arbitrary point P it turns out in many cases to be con-
venient to choose a cartesian system of coordinates taking the point
P on the curve as the origin of coordinates and the edges of the
natural trihedron as the coordinate axes. Below we shall obtain the
equation of a curve with such a choice of coordinate system.

We shall now express the derivatives of the vectors =, #, b with
respect to arc length of the curve again in terms of =, #, b. We have

T =v" = kmn

I'o obtain &', let us recall that the vector &’ is parallel to #» and that
b’-n = k2. It follows that

b = kzn.
Finally,

n'= (bx7r)=b"X71+ bxX T =kanX7t+h1bXn=— (k17 + kob).
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The system of equations

7 = k]_n,
n = — kl‘r —_ kzb,
b, = kzn

are called the Frenet formulas.

We shall find the expansion of the radius vector 7(s + 4s) in a
neighborhood of an arbitrary P, corresponding to the arc s along the
axes of the natural trihedron at this point. We have

As? As3

r(s + As) = r(s) + dsr'(s) + > r(s) + " r'U(s) 4+ -

But at the point P, 7»=0, 7' ==, 7" =kn, v'’ =ki'n— k127 —k1k2b, and
so on. Thus,

k12453
r(s 4+ 4s) = (As - NI -)-r +

(k1A52 k1'As8 4 > n
oS T %1
2 * 6

k1k2[]83
—_ oo Vb
(-5 )

We sce that in order to expand the function 7(s + A4s) as a power
series in A4s it is sufficient to know the curvature and torsion of the
curve as functions of the arc s. This gives the basis for assuming that
the curvature and torsion determine the curve to some extent. And
indced we do have the following valid theorem.

THEOREM. Suppose ki(s) and ka(s) are arbitrary regular functions
with ki(s) > 0. Then there exists a unique (up to position in space)
curve for which ki(s) is the curvaturve and ka(s) is the torsion at the
point corresponding to the arc s.

ProoF. Let us consider the following system of differential
equations

& = ki,
7= — k& — koL,
§' = kay,

where &, #, ¢ are unknown vector functions.
Suppose &(s}, n(s), £(s) is the solution of this system satisfying the
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initial conditions & = o, 5 = %o, { = (o for s = so, where &, 70, o
are three mutually perpendicular unit vectors whose triple product
equals 1: (&0, no, Jo) = 1.

We shall show that the vectors &(s), n(s), {(s) are unique and
mutually perpendicular for arbitrary s and (&, 7,¢) = 1. To this
end, we shall compute (£2)’, (92)', (%), (§-9)’, (n-{)', (£-&)’. Making
use of the equations of the system, we obtain the following ex-
pressions for these derivatives:

(&%) = 2R1E-m, (§'m) = kim? — k1E2 — kot -,
M?) = — k&g —kan-l, (n-0)" = kan® — kel? — ka-C,
(68) = 2kan-{, (C-€) = k- C + kabm.

If we consider these equations as a system of differential equations
for £2, 52, (2, &4, n-C, C-&, we note that it is satisfied by the set of
values &2 =1,92=1,02=1,69p=0,79-{ =0, {-£ = 0. On the
other hand, this system is satisfied by the values £2 = £2(s), 52 =
n2(s), -+, £+& = {(s)-£(s). Both these solutions coincide for s = sy,
and consequently, they coincide identically according to the theorem
on the uniqueness of the solution. Hence, for all s we have

£2(s) == 1, ?(s) = 1, -+, L(s)-&(s) = 0.

We shall show that (&(s), n(s), {(s)) = 1. Since &, #, { are mutually
perpendicular unit vectors, we have (£, 7,{) = 4 1. The triple
product (£, %, {) depends continuously on s, it equals 4 1 when
s = sp, and therefore it is equal to 1 for all s.

We shall now consider the curve y, defined by the vector equation

4 =;£(s)ds.

We note first of all that the parametrization of the curve y is the
natural parametrization. In fact, the arc length of the segment sgs
of the curve y equals

J17(s)lds = J |§(s)lds = s — so.

The curvature of the curve y equals |"(s)|=|£&'(s)| = ki(s). The
torsion of the curve y equals

(rlrllrlll) (5' kln, kll77 + klnl)

k2 k12

(&, kam, ki'n + ki(— k1§ — kal))
— = kz(s).

1212
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Thus, the curve y has curvature %;(s) and torsion kz(s) at the
point corresponding to the arc s.

This completes the first part of the theorem. We now proceed
to the proof of the second part.

Suppose y1 and y2 are two curves which have the same curvature
k1(s) and torsion ka(s) at the points corresponding to the arc s. We
shall correspond the curves y1 and ys by means of points corre-
sponding to the arc sg, and with the natural trihedra at these points.
Suppose 71, 11, by and 73, 73, b2 are unit tangent, principal normal,
and binormal vectors to the curves y; and y2 respectively.

The triples of vector functions 71(s), n1(s), b1(s) and r2(s), nz(s),
ba(s) are solutions of the system of equations for &, 7, {. The
initial values of these solutions coincide. It follows from this that
the solutions coincide identically. In particular, T1(s) = 72(s), or
r1'(s) = 72'(s). Integrating this equality between the limits sp, s, we
obtain

71(s) = rafs).

Thus, the curve y2 differs from y; only by its position in space.
This completes the proof of the theorem.
The system of equations

ki = kai(s), ka2 = ka(s)

arc called the natural equations of the curve. According to the theo-
rem proved above, a curve is defined uniquely to within position
in space by its natural equations.

§ 6. Plane curves. In this section we shall consider the oscu-
lating circle, evolutes, and involutes of a plane curve.

Suppose y is a plane curve and that P is a point on y. A circumfer-
ence « passing through the point P, is called the osculating circle to
the curve y at the point P if the curve has, at this point, contact of
the second order with the circle. The center of the osculating circle
is called the center of curvature of the curve.

We shall find the osculating circle of a regular curve y at a
point P, where the curvature is different from zero. Suppose
7 == r(s) is the natural parametrization of the curve. The equation of
any circumference has the form

(r —a)2 — R2 =0,
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where a is the position vector of the center of the circumference and
R is its radius.

According to the theorem in § 4, Chapter II, a necessary and
sufficient condition that the curve y have contact of the second
order with the circumference at the point P is that the following
conditions be satisfied at this point:

(r(s) — a)2 — R2 =0,

;fs—{(r(s) — @)2 — R% = 20(s) — a) 7'(s) = O
Td:? (r(s) — a)2 — R2} = 272 + 2(r(s) — a)-7"'(s) = 0.

Of these three conditions, the tfirst expresses the fact that the
point P lies on the circumfercnce. It is clear from the second
condition that the vector (#(s) — a), dirccted from the center of the
circle at the point P, is perpendicular to the tangent to the curve;
this means that the center of the circle lies on the normal to the
curve. The third condition defines the radius of the circle. In fact,
7'3(s) = 1, 7"’(s) = kn and since |7(s) — a| is the radius R of the
circle at the point P, and the vector 7(s) — a is parallel to the vector
n, we have 1 — Rk = 0. Thus, the radius of the osculating circle
equals the radius of curvature of the curve. It follows from this that if
the curvature at the point P equals zero, the osculating circle to
the curve does not exist at the point P. In this case, the circle
degenerates into a straight line, and the tangent to the curve has
contact of the second order with the curve.

We have thus found the radius and the position of the center of
the osculating circle. We shall now define the evolute of a curve.

The evolute of a curve is the geometric locus of the centers of
curvature of the curve.

We shall find the equation of the evolute of a regular curve y.
Suppose r = 7(s) is the natural parametrization of the curve. Then
the radius vector of the center of curvature of the curve is

F=r4 (1/R)n.
Suppose x = «x(t), ¥y = y(t) is any regular parametrization of the
curve y.
We have

g=ux+ (1kE =9+ (k)
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where £, 9 are the projections of the vector # onto the coordinate
axes. But

( 13+y12)3/2 I xl
k= ) e Y =
/ i II ’ x/ly/ £ —F ( /z + )1/2 T] :i:( P + y )1/2
It follows that the equations of the evolute are
y A A _ x'2 4 y"2
T=X—=Y —F— [ rra,r - I
y x —x v y ‘2 —x y

We shall explain what the evolute of a curve represents. We shall
limit ourselves to the consideration of the following fundamental
cases:

a) k'(s) > 0 or £'(s) <O, and %(s) docs not vanish, along the

entire curve;

b) %’(s) > O or %'(s) < O along the entire curve, and £(s) is zero

for s = sg;

c) R'(s) > Ofors << so, £'(s) < Ofors > sg, k'(so) = O, k"' (s0) 70,

and k(s) does not vanish.

In the first case, the evolute is a regular curve without singular
points (Fig. 11a). In fact, in this case we have

~ , Tk |IAW k'n
Pty =t (= bn())= -2 ro

=2

|

Fig. 11
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In the second case, the evolute decomposes into two regular
curves, which are the evolutes of the parts of the curve y corre-
sponding to s < so and s > sg, respectively (see Fig. 11b).

In the third case, the evolute is a regular curve, the point on the
evolute corresponding to the point sg on the curve is a singular
point, namely a turning point of the first kind (see Fig. 11c). We
shall show this.

For s = ¢y, we have

Fo=n(l/k) =0, ¥ = — ke(l/R)' + n(1/R)",
7= — 2k (1JR)" + n(1/R)"".

We shall refer the evolute to a rectangular coordinate system,
taking the point ((so) on the evolute as the origin of coordinates,
and the tangent and normal of the curve y at the point Q(so) as the
direction of the x and y axes. FFor such a choice of coordinate system,
we shall have

Z= (= kJ)(1/R)"(s — s0)*> + -~

7= &(1/R)"(s — s0) + -+,

It follows from this that the point Q(so) on the evolute is a singular
point, namely a turning point of the first kind.

We shall now consider some properties of the evolute.

Suppose v is a regular curve for which &’(s) retains the same sign
throughout, and %(s) never vanishes. In this case, as we showed, the
evolute ¥ of the curve y is a regular curve without singular points.

We shall find the arc length of the segment of the evolute, corre-
sponding to the segment s;sz on the curve. We have

N 83 82
s(s1, s2) = [|F'|ds = [ [(1/k)’|ds.
81 81
It follows that
| 1 1
S(s1, s
z) | Ee) T R

since &’ retains the same sign.

Thus, the arc length of a segment of the evolute equals the
absolute value of the difference of the radii of curvature at the
points corresponding to the endpoints of this segment.

We shall show that the evolute 7 is the envelope of the normals to
the curve y. In fact, the point ((s) on the evolute lies on the normal
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to the curve at the point Q(s). The tangent to the evolute at the
point (Q(s) has the direction # = n(i/k)’, and consequently, it
coincides with the normal to the curve at the point Q(s).

We shall now define an 7nvolute of a curve.

Suppose ¥ is a regular curve and that » = 7(s) is its natural para-
metrization. Suppose (Q(so) is any point on the curve. We mark off
on the tangent to the curve y at an arbitrary point Q(s), s < so, a
segment equal to sp — s, in the direction of the vector 7(s). We
denote the point thus obtained by Q(s) (see Fig. 12).

The geometric locus of the points @(s) is called an involute of the
curve.

Obviously, a curve has an
infinite number of involutes.

A graphic representation of
an involute can be gotten in =SV (s)
the following way. We imag-
ine a taut string, wound on Q(s)
the part of the curve y, corre-
sponding to s < sp with end-
point at the point Q(so). If
this string is unwound by its
end, tangentially to the curve, 4
then its endpoint will describe
an involute of the curve.

We shall now find the equation of the involute. By definition,
the position vector of the point @(s) on the involute is

Q(sp)

Fig. 12

F=7+4+ (so — s).

This is therefore the equation of the involute.
In the case of an arbitrary parametrization » = 7(¢), the equation
of the involute will obviously be
F=7 4 A BV
r=1zv —_—- 4 .
V2
t
We shall explain what the involute represents in two fundamental
cases:
a) k(s) does not vanish for all s < s¢ on the curve;
b) k(s) vanishes only for s = s;, where 2'(s;) 7% O.
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In the first case, an involute is a regular curve without singu-
laritics. In fact,

F=1(—(s—so)7) = —(s — so)kn # 0.

In the second case, an involute is also a regular curve, but the
point @(s1) on the involute is a singular point, namely a turning
point of the second kind. In order to prove this assertion, we must
refer the involute to a rectangular cartesian coordinate system
taking the point Q(s1) as the origin of coordinates, and as its co-
ordinate axes, straight lines parallel to the tangent and normal to
the curve y at the point Q(s1).

We shall consider some properties of an involute.

Suppose y is a regular curve with nonzero curvature and let $ be
one of its involutes.

The tangent to the involute # at the point §(s) has the direction
F' = (s — so)kn, i.e. it is parallel to the normal to the curve y at the
point Q(s). Since the point (s) lics on the tangent to the curve y at
the point Q(s), the normal to the involute at the point @(s) is the
tangent to the curve at the point Q(s).

The curve ¥ is the evolute of its involute. To prove this, it suffices
to show that the point Q(s) on the curve y is the center of curvature
of the involute at the point @(s). In fact, the point Q(s) lies on the
normal to the involute at the point ¢(s). The radius of curvature of
the involute at this point is

(79"

l/ﬁ: == § — S.
vr’lzrlz . (r’.rll)z

It follows from this that the point Q(s) is the center of curvature of
the involute at the point Q(s).
EXERCISES FOR CHAPTER III

1. Find the length of the segment — a < x < a of the parabola
y = bx2.

2abV'1 + 4a2b2 + In(2ab + V1 + 4a%b2)
2a )

ANSWER: § =
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2. Find the length of the segment of the curve
x =acosht, y=asinh!, z2=at

between the points O and ¢.

ANSWER: s = V/2a sinh .
3. Find the arc length of the astroid

x = acosdi, = a sin3 ¢.

ANSWER: s = 6a.
4. Find the length of the segment 0 < ¢ < 2n of the cycloid

x =a( —sint), y=a(l —cost).

ANSWER: s = 8a.
S. Find the expression for arc length of the curve defined by an
equation in polar coordinates

p = p(?).
%
ANSWER: s(th, #2) = [ Vp2 + p'2 d9.
%
6. Find the curvature of the curve

x=1t—sint, y=1— cost, z=4sin—2—.

Lt
ANSWER: By = iVl + sinzj.

7. Find the curvature at the point (0, 0, 0) of the curve defined
by the equations in the implicit form

x + sinh x = siny 4 ¥,
24+ e =x+4+In(l +2x) + 1.

ANSWER: k| = \/6/9.

8. Find the curvature and torsion at an arbitrary point ¢ of the
curve given in Exercise 2.

ANSWER: k1 = 1/(2a cosh?¢), ks = 1/(2a cosh? ¢).

9. Compute the torsion of the curve

x =acoshifcost, y=acoshtsint, z=al.
ANSWER: k2 = — a cosh t.

10. Show that thc curvature and torsion of a simple helix are
constant.
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11. Find the éxpression for the curvature of a plane curve given
in the polar form.

ANSWER: k) = (—:’— -+ (%)’) / (1 + (—Fl'—>'2>%.

12. Show that the torsion of the curve
r=a fb(t) X b'(t)dt,
where b(f) is a vector function satisfying the conditions |b(f)| = 1,
b’(¢) # 0, is constant.

13. Show that the ratio of the curvature to the torsion of the
curve

x =a/fsinaft)dt, y = afcosa(t)dt, z=0bt

1s constant.
14. Find the evolute of the parabola y2 = 2px.
ANSWER: Semicubical parabola

27py? = 8(x — p)3.
15. Find the evolute of the tractrix

14
x = —a(lntan-2—-{—cost>, y = asin {.

ANSWER: Catenary

X
y = a cosh —.
a

16. Find the evolute of the astroid

%+ Iyt =1
ANSWER: Astroid
# 4yt~ =2
17. Find the evolute of the circle x2 4+ y2 = R2.
ANSWER: ¥ = R(cos & 4+ (¢ — ¢) sin 8),
y= R(sin® — (§ — ¢) cos ).

18. Find all the plane curves with given natural equation
k= k(s).
ANSWER: x = [sin «(s)ds, y = [ cos «(s)ds, where a(s) =/ k(s)ds.
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PrROBLEMS AND THEOREMS FOR CHAPTER III

1. A function f(#) defined on the interval a < ¢ < b is said to be
a function of bounded variation if the sum

Xk |/ (tk) — [(tr-1)]

is uniformly bounded for arbitrary ¢, fs, ---, £, such that
a <t <tg<<: - <itp<bh
Prove that a curve y is rectifiable if and only if it permits the
parametrization
x=xl) y=y0, =20,

where x(¢), y(f), z(¢) are functions of boundcd variation, in a neighbor-
hood of each of its points.
2. Prove that if a curve possesses any onc of the following
properties then it has the remaining three propertics also:
1) the tangents to the curve form a constant angle with some
direction,
2) the binormals to the curve form a constant angle with some
direction,
3) the principal normals to the curve are parallel to some plane,
4) the ratio of the curvature to the torsion of the curve is
constant.
Find the general form of the curve which has these propertics.
3. Prove that if the curvature and torsion of the curve arc
constant and different from zero then this curve is a simple helix.
4. Prove that if a onc-to-one correspondence is established
between the points of two curves for which the binormals to the
curves coincide in corresponding points, then the curves are plane
curves.
5. Prove that an arbitrary curve with constant torsion and
nonzero curvature can be given by the vector equation

r=cfb(t) x b'(t)dt,
where b(¢) is a vector function satisfying the conditions
b =1, b) 0.
6. Construct the curve if one of the three vector functions =(s),

n(s) and b(s) is given.
7. If a correspondence between the points of two curves can be

Pogorelov, Diff. Geometry.
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established in such a way that the tangents at corresponding
points of these curves are parallel then the principal normals and
binormals are also parallel. Prove this.

8;. The curves v; and y2 are said to be Bertrand curves if a
one-to-one point correspondence can be established between them
for which the principal normals coincide at corresponding points.

Prove the following properties of the curves y1, y2:

a) the distance betwcen corresponding points on the curves y;
and y2 is constant;

b) the tangents to the curves y1 and y2 at corresponding points
form a constant angle;

c) the curvature and torsion of each of these curves are connected
by the relation

a sin 9k + a cos kg = sin 9,

where a is the distance between corresponding points on the curves
y1, y2 and & is the angle between the tangents at the corresponding
points.

82. Prove that if the curvature and torsion of a curve are con-
nected by the linear relationship

a sin k1 + a cos #ka = sin 9,

then the curve is a Bertrand curve.
83. Prove that a curve defined by the vector equation

r=afe(t)dt + b/fe(t) X ¢(t)dt,

where ¢(?) is a vector function, satisfying the conditions |e(f)] = I,
le'(¢)) = 1, is a Bertrand curve. And conversely, an arbitrary
Bertrand curve can be defined by a vector equation of this type.



PART TWO

THEORY OF SURFACES

CHAPTER IV

CONCEPT OF SURFACE

§ 1. Elementary surface. Simple surface. General surface.
A plane region is said to be an elementary region if it is the image of
an open circle (i.e. the interior of a circle) under a one-to-one and
bicontinuous mapping. Briefly, this is expressed as follows: an
clementary region is a region homeomorphic with a circle.

Suppose y is a simple closed curve in the plane. The well-known
Jordan theorem states that a simple closed curve decomposes the
plane into two regions and is the frontier of each of these regions.
One of these regions is finite and the other is infinite. It turns out
that the finite region is homeomorphic to a circle. Thus, the in-
terior of a square, rectangle, ellipse are all elementary regions.

We now define an elementary surface.

A set @ of points in space will be called an elementary surface if it
is the image of an elementary region in a plane under a one-to-one
and bicontinuous mapping of this region into space.

Suppose @ is an elementary surface and G is an elementary plane
region whose image under a one-to-one and bicontinuous mapping f
is the surface @. Let # and v be the cartesian coordinates of an
arbitrary point belonging to the region G and let x, y, z be the
coordinates of the corresponding point on the surface. The coordi-
nates ¥, ¥, z of the point on the surface are functions of the coordi-
nates of the point in the region G:

x = fi(u,v), y = fa(u,v), z=fs(u,v).

This system of cquations, which determine the mapping f of the
region G into space, are called the equations of the surface in the
parametric form.

A set @ of points in space will be called a simple surface if this set
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1s connected and.every point X in @ has a neighborhood G such that
the subset of @ which lies in G is an elementary surface.

An elementary surface is a simple surface. But the set of clementa-
ry surfaces forms only a part of the set of all simple surfaces. For
example, the sphere is a simple surface but it is not elementary.

Simple surfaces cannot be characterized generally and simply in
the large as this was done for simple curves. Some idea of the
variety of simple surfaces is given by the following reasoning. If an
arbitrary closed set of points is deleted from any simple surface in
such a way that the connectivity of the remaining part is left
undisturbed, then the remaining part will also be a simple surface.

A simple surface is said to be complete if the limit point of any
convergent sequence of points on the surface also is a point on the
surface. For example, a sphere and a paraboloid are complete
surfaces, but a spherical segment is not a complete surface (we have
in mind here a spherical segment without the circumfercnce
bounding it).

If a simple complete surface
is finite, then it is said to be
closed. Besides spheres, the
surface of a torus, obtained by
revolving a circumference about
a straight line lying in the plane
of the circumference and not

Fig. 13 intersecting it (Fig. 13), is for
cxample, also a closed surface.

We now define the concept of neighborhood of a point on a simple
surface.

A neighborhood of a point X on a simple surface @ is the common
part of the surface @ and some neighborhood of the point X in
space. In agreement with the definition, each point of the simple
surface has a neighborhood which is an elementary surface. In the
sequel, in speaking of a neighborhood of a point on a surface we
shall have in mind such an elementary neighborhood.

A set @ of points in space will be called a general surface if it is
the image of a simple surface under a continuous and locally one-to-
one mapping of it into space.

We shall say that the mapping f of a simple surface @; and the
mapping f2 of the simple surface @3 define the same general surface




CHAPTER IV, § 2 69

@ if a one-to-one and bicontinuous correspondence can be established
between the points of the surfaces @; and @, for which the images
of corresponding points of these surfaces coincide on the surface @.

Suppose the general surface @ is the image under a one-to-one and
continuous mapping into space of a simple surface @. We shall say
that a sequence of points f(X) on the surface @ converges to the
point f(X) if the sequence of points X, on the simple surface @
converges to the point X. A neighborhood of the point f(X) on the
surface @ is the image of an arbitrary neighborhood of the point X
on the surface @ under the mapping /.

Although the convergence of sequences of points on a general
surface @ and the neighborhoods of points on @ are defined as the
images of convergent sequences and neighborhoods on a simple
surface, starting with some definite mapping, these concepts do not
depend on the particular character of the mapping f in the sense
that starting with another mapping f of another simple surface
which defines the same general surface @, we arrive at the same
convergent sequences and the same neighborhoods of points on the
surface @. This follows from the possibility of establishing a one-to-
one and bicontinuous correspondence between the points on the
simple surfaces @ and @' for which the images of corresponding
points on these surfaces under the mappings f and f’ coincide. The
images of the corresponding convergent sequences on the surfaces
@ and @' definc the same convergent sequence on the surface @. The
images of corresponding neighborhoods of corresponding points on
the surfaces @ and &' definc the same neighborhood of the point
on the general surface ®.

In conclusion, we note that if a simple surface, in particular an
elementary surface, is considered as a general surface, then the
concept of convergence of points on it is equivalent to the concept
of geometric convergence, and the concept of neighborhood is
equivalent to the concept of geometric neighborhood introduced
for simple surfaces.

§ 2. Regular surface. Analytic definition of a surface. It
follows from the definition of a general surface that there exists a
neighborhood for each of its points which is an elementary surface.

A surface @ will be said to be regular (k-times differentiable) if
each of the points on this surface has a neighborhood, permitting a



70 CHAPTER IV, § 2

regular parametrization, i.e. allowing one to write the equations in
the parametric form

¥ =fi{w,v), y=fawv), z=fau,0),

where f;, f2, fs are regular (k-times continuously differentiable)
functions, defined in an elementary region G of the «, v-plane. For
k = 1, the surface is said to be smooth.

A surface is said to be analytic if it allows an analytic para-
metrization (the functions f1, f2, fs are analytic) in a sufficiently
small neighborhood of each of its points.

In the sequel we shall consider regular surfaces exclusively.

A point P on a regular surface will be called a regular point if the
surface permits a regular parametrization in a neighborhood of this
point

x=x(u,v), y=7yu1v, z=2zu,v),

satisfying the condition that the rank of the matrix

(xu Yu zu)

Xv Yo 2y

evaluated at the point P equals two. In the contrary case a point of
the surface is called a stngular point.

Thus, if a point P of a regular surface is singular then the rank of
the above-indicated matrix is less than two for any regular para-
metrization of @ in a neighborhood of the point P.

A curve on a surface all points of which are singular points of the
surface is called a singular curve.

In the sequel, if the contrary is not expressly stated, we shall
assume that all points on the surface considered are regular points.

In agreement with the definition, in the neighborhood of each ot
its points a regular surface can be given by means of equations in the
parametric form

x=2zx(u,v), y=1ymurv, z==z2u71),

where x(#u, v), y(u, v), z(#, v) are regular functions of the variables
u, v defined in some region G of the u, v-plane. The question
naturally arises, when does the system of equations

x=xu,v), y=ymuv), z==zu,0v),

where x(u, v), y(«, v), z(%, v) are regular functions in some region G
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of the u, v-plane, define a surface? The answer to this question is
given, in many cases, by the following theorem.

THEOREM. If x(u,v), y(u, v), z2(u, v) are regular functions in the
region G of the u, v-plane which satisfy the condition that the rank of

the matrix
(xu Yu 2 u)
Xy Yv 2y

equals two everywhere in G, then the system of equations
x=2x(u,v), y=1yuv, z=z@u,v

defines some surface . This surface is the image of a simple surface G
under a continuwous and locally one-to-one mapping which assigns to
the point (u, v) in the region G a point in space with coordinates
%(u, v), y(u, v), z(n, v).

In the proof of the necessity part of this theorem, we obviously
need only the assertion about the local one-to-oneness of the
indicated mapping. We shall prove this.

We assume that the assertion is not true; then there exists a
point (ug, vo) in the region G which is such that in every neighbor-
hood, however small, of this point, one can find two distinct points
(#1, v1) and (w2, v2) such that

x(u1, v1) — x(u2, v2) = 0, y(u1, v1) — y(ue, v2) = 0O,
2(u1, v1) — z(ug, va) = 0.
We have

x(2e1, v1) —x(u2, vo) = (x(%1, v1)—x{u1, va))+ (¥(u1, v2) —x(u2, va)) =
(v1 — va)xy(ue1, 91) + (#1 — u2)xy (31, v2) = 0.

Analogously

y(u1, v1) —y(ug, ve)=(vi—va)ys(u1, F2)+ (1 —u2)yu(de’, v2)=0,
2(u1, v1) —z(ug, v2)=(vi—v2)zy(u1, Fa) 4 (1 —u2)zy(ds’, va)=0.

Considering the fact that #; — us, v1 — v2 do not vanish simul-

taneously, we conclude from the three equations thus obtained that
the rank of the matrix

(xu(ux, 91'), yuluy, 92'), 2u(uy, 193'))
Zo(P1, v2),  Yo(P2, v2), 2zu(P3, v2)

is less than two, i.e. its second order determinants are equal to zero.
In virtue of the continuity of the functions xy, %4, - - -, 2, it follows
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from this that all the second order determinants of the matrix

<xu Yu zu)

Xy Yv 2

are cqual to zero at the point (#, vo), i.c. the rank of the matrix is
less than two. We have thus arrived at a contradiction. This con-
cludes the proof of the assertion.

With a proper choice of x, ¥, z-coordinates axes, some simple
surfaces permit a parametrization for the entire surface of the form

x=u y=v, 2=funuv)),

where f(x, v) is a function defined in a region G of the u, v-plane.
The equations of this surtace can be written in the equivalent form

2= fx,y).

Such a parametrization of the surface differs from others by its
greater graphicalness. The correspondence between points on the
surface and points of the region in the x, y-plane is realized by a
projection by straight lines, parallel to the z-axis.

We now go over to the implicit definition of a surface.

We shall say that the surface @ is defined by the equation

P(*,9,2) =0,

expressing by this only the fact that the coordinates of points on the
surface satisfy the given equation. In this connection, there may
exist points in space which satisfy the given equation and which do
not belong to the surface ®.

Thus, defining a surface by an equation in the implicit form
@(x, ¥, 2) = 0 is incomplete, in contrast to the parametric repre-
sentation considered above. Nonetheless, some problems concerning
surfaces can be solved even if we have at our disposal only such an
incomplete definition of the surface.

The following theorem plays an important role in the investigation
of surfaces defined by the equation ¢(x, y, 2) = 0.

THEOREM. Suppose ¢(x,y,2)=0 is a regular function of the
variables x, vy, z. Suppose M is the set of points tn space satisfying the
equation (%, y, 2) = 0, and that (xo, Yo, Xo) ¢S a point in M for which
@22 + @y? + @2 # 0. Then the point (xq, Yo, 20) has a neighborhood
such that all the points of the set M belonging to this neighborhood form a
regular elementary surface.
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Proor. Suppose for definiteness that ¢, % 0 at the point
(%0, Yo, 20). By the implicit function theorem there exist positive
numbers 6 and ¢ and a regular function y(x, y), defined in the
region |x — xg| < 6, |y — yo| <, such that all the points
(x, v, v(x, ), ¥ — x|l <96, |y— yo| <0 satisfy the equation
@(x, y, 2) = 0 where these points exhaust the set of all points in the
parallelepiped |x — xo| << d, |y — yo| < 9, |2 — 20| < ¢, satisfying
the equation ¢(x, y, z) = 0. The elementary surface, referred to in
the theorem, is given by the equation

z=yxy), |¥—%| <9 [y—yo| <9
This completes the proof of the theorem.

§ 3. Special parametrizations of a surface. A regular surface
permits an infinite number of parametrizations in a neighborhood of
each of its points. In fact, suppose

x=xuv), y=1yuv, z=2zu,v

is any parametrization of the surface in a neighborhood of the point
Q(uo, vo)-
If p(«, B) and y(a, B) arc arbitrary regular functions satisfying
the conditions
uo = (a0, fo),

Pa P8 0
vo = p(o, Po), 1 >

Vo '/)ﬂ

at the point (o, fo), then the equations
x=x@y), y=y@v), 2=2zpv)

also define a regular parametrization of the surface. This follows in
an obvious manner from the fact that the formulas

u =g p), v=ry@/p

define a one-to-one and bicontinuous mapping of a sufficiently small
neighborhood of the point («o, fo) in the «, f-plane onto some
neighborhood of the point (#g, vg) in the %, v-plane.

In the investigation of regular surfaces, it is convenient to use
special parametrizations. We shall consider the special para-
metrization which is most frequently used.

Suppose

x =x(u,v), y=yuv), z=2zun0



74 CHaprTER IV, § 3

is any regular parametrization of a surface in a neighborhood of the
point Q(uo, vo). Since the rank of the matrix

(xu Yu Zu)

Xy Yo 2y

equals two, we can, without loss of generality, assume that the
determinant

Xy Yu
Xy Yo

does not vanish at the point Q. By the implicit function theorem,
the system of equations

x = 2,9, ¥ =y(,9)

is uniquely solvable in a neighborhood of the point Q. More pre-
cisely, there exist regular functions # = ¢(x,y) and v = y(x, y)
satisfying the equations x = x(#, v) and y = y(u, v) identically in a
sufficiently small neighborhood of the point (%, y0), x0 = x(%0, vo),
yo = y(uo, vo), Where (%o, yo) = to, (%o, Yo) = vo.

From this it follows that our surface permits the parametrization

x=a y=4§z=2z:pp), vy p)=2ix7p)

in a sufficiently small neighborhood of the point @, or, what
amounts to the same thing, that z = %(x, y).

Suppose x = x{u,v), ¥ = y(«,v), 2= 2z(u,v) is any regular
parametrization of the surface in a neighborhood of the point

Q(uo, vo).

Suppose we consider two differential cquations
A1(u, v)du + Bi(u, v)dv = 0,
Aa(u, v)du + Ba(u, v)dv =0

in a neighborhood of the point (ug, vo), where the differential
equations satisfy the condition

A1 B

Ay Bo|™°

at the point (u, vo).

If ¢(u,v) = % = constant and (%, v) = ¥ = constant is a so-
lution of these differential equations, satisfying the conditions
Pu® + pp? # 0, pu? + pu? # 0 at the point (#g, vo), then the surface
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permits a parametrization

x=%(it,0), y=74yu,9), z=%z(d,09)
in a neighborhood of the point O, where

Ao, v), yu, ) ==xuv), Fek ), yu)=yx7),
Hp(u, v), wlu, v) = 2(u, v).

In order to prove this assertion, it is obviously sufficient to show
that
Pu  Po
Yu Yo
at the point (ug, vg). In fact, by assumption ¢(#, v) = constant is a
solution of the first equation, and therefore ¢udu 4 @ydv = O must
be satisfied identically in virtue of the first equation. It follows that

#0

Pu  Po| _
A Bi|— 0.
Analogously, we have that
Yu Yo __
As Ba|— 0.
If we assume that | @y @4

= 0, then we easily get

Yu Yo
Ay Bi| _ 0,
A2 Bs

which is impossible. This completes the proof of the assertion.

§ 4. Singular points on regular surfaces. In the present
section we ought to characterize the singular points on a surface as
completely as we did for the singular points on curves. However,
since we do not wish to unduly expand this book, we shall not do
this. Therefore, we shall limit ourselves to the most general dis-
cussions on this point.

Suppose x = x(u, v), ¥y = y(u, v), 2 = z(u, v) is a regular para-
metrization of a regular surface.

Suppose the rank of the matrix

(xu Yu Zu)
Xv Yv 2y



76 CHAPTER IV, § 4

is less than two at the point Q(uo, vo) on this surface. The question is,
how does one recognize whether or not the point is a singular point
on the surface, or whether or not it is a regular point?

We shall give sufficient criteria that the point @ be a singular
point.

We shall make use of the vector equation of the surface,
r = 7(#, v). Then the condition that the rank of the above matrix
be less than two is expressed by the fact that the vector product
vy X 7y vanishes.

Suppose P(u, v) is a point on the surface near Q; suppose that
ru X 7y 7= O at this point. We consider the vector function

ru(te, v) X 7y(u, v)

|7 (s, V) X 7o(u, )|

Eu,v) =

Then a necessary condition that the point @ be a rcgular point
is that the vector function &(%, v) tend to a definite limit as P — Q.

Looking a trifle ahead, we note that &(#, v) is the unit normal
vector to the surface at the point P. The normal to the surface is
defined independently of any concrete parametrization of the
surface. If the point Q is a regular point on the surface, then the
normal to the surface in a neighborhood of this point depends
continuously on the position of the point and, consequently, the
unit vector &(x, v) tends to a definite limit, the unit normal vector
to the surface at the point Q, as P — Q.

Suppose now that £(%, v) tends to some unit vector as P — Q. We
choose the point P’(#’, v'), near Q, different from P, on the surface,
and we define w(P, P’) by

(P, P') = (r(u, v) — #(uo, vo)) - (v(u', v') — r(1s0, v0))
7(s, v) — r{wo, v0)]| [7(’, 0') — 7{uo, v0)]

Then the point @ will, as is well known, be a singular point if the
greatest lower bound of the expression w(P?, P’) is greater than —1
as P, P - Q.

We shall show this. _

The expression (P, P') has a simple gecometric interpretation. It
is the cosine of the angle formed by the segments QP and QP’
(Fig. 14). We shall assume that the point Q is a regular point and
that » = 7(», v) 1s a parametrization for which 7y X Fy is different
from O at the point Q. We choose the points P and P’ in a special
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way, namely we take them to be P(ilg 4+ A, 9¢), P'(itg — k, Dp).
Then w(P, P’} — —1 as h — 0. Since the cosine is not less than
—1, —1 is the greatest lower bound of
the expression w(P, P’) as P, P’ — Q.

Thus, if the greatest lower bound of
the expression w(P, P’) is not equal to
—1 as P, P' — (), then Q is, as known,
a singular point.

In conclusion, we shall say a few
words about singular pointson a surface
defined by the equation ¢(x, y, 2) = 0.

First of all, only those points where
@z = ¢y = ¢, = Ocan be singular points
on the surface. In fact, if one of the Fig. 14
partial derivatives, for example g, is
# 0 at the point @, then the surface permits a regular para-
metrization of the form z = y(x, ¥) in a neighborhood of the
point Q, from which it follows that Q is a regular point.

Suppose ¢z = @y = @, = 0 at the point Q(xo, Yo, xo) on the sur-
face. Expanding the function ¢ by the Taylor formula in a ncighbor-
hood of the point @, we obtain

an(x — x0)2 + ag2(y — y0)2 + asalz — 20)2 + 2a12(x—x0)(y—yo)+
2a13(x — xo)(z — 20) + 2aq3(y — yo)(Z — z9)+ R =0.

It turns out that if the quadratic form 3 ayé:&; is definite, i.e.
vanishes only when all the &; equal zero, then in a sufficiently small
neighborhood of the point (xo, yo, Z0) none of the points in space,
except the point (%o, yo, 20), satisfies the equation ¢(x,y, z) = O.
Therefore, the surface @ cannot be defined by the equation ¢=0in
a neighborhood of the point Q.

REMARK. Frequently a surface defined by the equation
@(x, v, z2) = 0 is understood to be the geometric locus of points in
space, satisfying the equation ¢ = 0. With such a definition of a
surface, the point in the casc just considered is called an isolated
singular point.

If the quadratic form Y, ayé:&s is alternating, but does not factor
into the product of two linear forms, the geometric locus of points in
space which are near the point (xo, yo, 20) and satisfy the equation
@(x,y,z) = 0 has a form approximating that of a second degrce
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conic, whose equation is ¢(x, ¥, z2) — R = 0. If the surface is defined
as the geometric locus of points in space which satisfy the equation
@(x, y,z) = 0, then in this case the point (xg, yo, 20) is called a
conical point.

If the quadratic form 3 ay€:; factors into the product of two
linear forms, various cases may arise. The point may be a singular
point (for example, the point (0, 0, 0) on the surface xy — 23 = 0)
or a regular point (for example, the point (0, 0, 0) on the surface
xy — %22 = 0). In this case, it is necessary to investigate further
terms in the expansion of the function ¢.

EXERCISES AND PROBLEMS FOR CHAPTER [V

1. Write the equation of the surface generated by half-lines which
emanate from the point (4, b, ¢) and intersect the parabola

z2=0, y2=2px

ANSWER: (bz — cy)% = 2p(z — c)(az — cx).
2. Find the equation of the cylinder with generators parallel to
the straight line x = y = 2, described around the ellipsoid

22 + 4y2 4 922 = |.

ANSWER: (x + 4y + 92)2 — 14(x2 + 4y2 + 922) = Q.
3. Find the geometric locus of the projections of the center of
the ellipsoid

onto its tangent planes.

ANSWER: (x2a2 + y2b2 4 22c2) = (x2 + y2 + 22)2.

4. Write the equation of the surface which is obtained by ro-
tating the curve

about the z-axis.

ANSWER: x = p(u) cos v, y = @(u) sin v, z = yp(u).

5. The straight line g moves in space in such a way that the
following conditions are satisfied:

a) the straight line always intersects the z-axis orthogonally;
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b) the point of intersection of the straight line g with the z-axis
moves uniformly with velocity a;

c) the straight line rotates uniformly about the z-axis with
angular velocity w.

Write the equation of the surface which the straight line g de-
scribes as it moves.

ANSWER: ¥ = v CcoS w#, ¥ = v sin o, 2 = an.

Here # is the time, and v is the distance of a point on the surface
from the z-axis. The surface is called a simple helicoidal surface or
a helicoid.

6. Suppose three families of surfaces are prescribed by the
equations @(¥, ¥, 2) = # = constant, y(x, ¥, 2) = v = constant,
x(x,y, 2) = w = constant.

Prove that if the Jacobian

Dig, v, 2)

Dixy,2) 7~ 0

at the point (xo, y0, Z0), then all three families can be defined in a
neighborhood of this point by the vector equation r = »(u, v, @).
The surfaces of distinct families are obtained by setting # = con-
stant, v = constant, w = constant.

7. A translation surface is a surface generated by the successive
displacement of one curve along another curve.

Prove that a translation surface can be defined by the equation

r = pu) + p(),

where ¢ and y are vector functions of which the first depends only
on #, and the second only on v.

8. Show that the surface which is the geometric locus of the mid-
points of segments whose endpoints lie on two given curves, is a
translation surface.

9. IFind the singular curve on the pseudosphere

% = sin # cos v, = sin#sinv, 2z = cos# + In tan »/2.

ANSWER: The singular curve is # = /2.



CHAPTER V

FUNDAMENTAL CONCEPTS FOR SURFACES
WHICH ARE RELATED TO THE CONCEPT
OF CONTACT

§ 1. Tangent plane to a surface. Supposc @ is a surface and P
is a point on @; let « be any plane passing through the point P. We
take a point Q on the
surface @ and denote
its distance from the
point P and from the
plane « by 4 respecti-
vely % (see Fig. 15).

We shall call the
plane « the tangent
plane to the surface @
at the point P if the
ratio h/d — 0 when
Q — P.

THEOREM. A smooth
surface has a unique tangent plane at each of its points.

1f r = r(u, v) is any smooth parametrization of the surface, then the
tangent plane at the point P(u, v) is parallel to the vectors 7,(u, v) and
7o(u, v).

Proor. We shall assume the surface @ has a tangent plane « at
the point P(u, v). Suppose # is a unit vector which is perpendicular
to the plane «. The distance 4 from the point Qx4 4u, v 4 4v) to
the point P(u, v) equals |7(# + Au, v + 4v) — 7(u, v)|. The distance
from the point Q to the plane « equals |((r(# + 4u, v + Av) —
r{u, v)) -n{. Hence we have

Fig. 15

hd — [(r(n + Au, v + Av) — r(u, v)) nL
T plu+ Av,v 4 Av) — r(w, v)|

According to our definition, A/d — 0 when 4 and Av independently
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tend to zero. In particular,

__|(r(u + Au, v) — r{u, v)) n| N

[7(2t 4- Au, v) — r(u, v)| 0
as du — 0.
But
|(r(n + Au, v) — 7(u, v)) -n|
|7 + Au, v) — 7(u, V)| -
I r(u 4+ Au, v) — 7(u, v) "l
| Au | [ruls, v)-n|
l r(u + Au, v) — 7(u, v) |7u (%, v)|
| Au

Thus we have
ru(n, v) n = 0.

Since 7y(u, v) 7 0 (7u(w, v) X 7y(u, v) # 0), equality, ry(%, v) -n=0,
is possible only in the case when the vector 7,(#%, v) is parallel to the
plane a.

One shows in an analogous way that the vector 7,(x, v) is also
parallel to the plane « and inasmuch as the vectors 7,(#, v) and
7»(u, v) are different from zero and are not parallel, (ry(#, v) x
7o(#, v) # 0), the tangent plane is unique, provided it exists.

We shall now prove the existence of the tangent plane. Suppose
the planc « is parallel to the vectors 7,(#, v) and 7,(x, v). We shall
show that it is the tangent plane to the surface at the point P(«, v).

We have

[(#(n + Au, v + Av) — r(u, v)) -n|

hjd = 7 + du, v + Av) — r(w, v)|

[(ru-n)Au + (ry-n)dv + 61VZMT+TUE| .
|rudu + ry,dv + eaV Au? —I—_LEZI

(ru-n) TAZ:HH n) Av L 1|
VAu? + Av? \/Au2 + Av?
| Au Av
N aE s dve T dw A T

where |e1| and |eg| tend to zero when Au, Av — 0.

Pogorelov, Diff. Geometry.
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We shall assume that there exists a sequence of pairs du, dv
tending to zero such that the corresponding ratio #/d > ¢ > 0. The
sequence of pairs Au, Av contains a subsequence for which the ratios

4 4
u_._ and v

VAu? - Av? VAu? - Av?

will converge. Suppose & and % are the limiting values of these
expressions. Obviously, £2 + 72 = 1. Passing to the limit of the
ratios #/d with respect to the chosen subsequence of the sequence of
pairs A%, Av we obtain

((ra-m)E + (roem]
|7u'f + 7’1)771 )

Since ryn = 0, ry-n = 0, and &7y + 57y 7 O (74 and 7, are not
parallel), 2/d — 0. But this contradicts the fact that all the values of
h/d near the limit are, by assumption, greater than ¢ > 0.

This completes the proof of the theorem.

It is not difficult to write down the equation of the tangent plane
once we know its direction.

Suppose 7 is the radius vector of any point on the tangent plane
to the surface at the point P(, v). Then the vectors ¥ — 7(u, v),
ru(u, v), 7y(1, v) are parallel to the tangent plane and, consequently,
their triple product vanishes. It follows that the equation of the
tangent plane is

hjd —

(F — 7(n, v), ru(u, v), 7o{u, v)) = 0.
Suppose the surface is defined by the equations
x=2zxu,v), y=1vyuv, z=zu71).

It follows from the vector equation of the tangent plane that the
equation of the tangent planc corresponding to this representation
of the surface will be

Z— x(u,v), ¥—9yuv), z—z2u0
Xu(u, v) Yuln, v) zy(u,v) | =0.
Xo(u, V) Vo1, v) 2y(u, V)
The equation of the tangent plane to the surface, given by the

equation z = z(x, ), is obtained from the cquation just found. It
suffices to note that defining the surface by means of the equation
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z = z(x, y) is only an abbreviation for the parametric representation
x=u, y=uv zI=2um0v).

Therefore, the equation of the tangent plane in the case when the
surface is defined by the equation z = z(x, y) will be

or
Z—z—pE—2x) —qF —y) =0,

where $ and g denote the first partial derivatives of the function
z(x, y) with respect to x and y, respectively.

Finally, we find the equation of the tangent plane for the case
when the surface is defined by the equation ¢(x, y, z2) = 0. Suppose
(x, v, 2) is a point on the surface at which g2 + @2 + ¢.2 % 0 and
x = x(u,v), y = y(u, v), 2 = z(», v) is any smooth parametrization
of the surface in a neighborhood of this point. If we replace x, y, z in
the equation of the surface by x(%, v), y(#, v), z(#, v) we obtain an
identity with respect to # and v.

Differentiating this identity, we obtain

Pz¥u + PyYu + @220 = O,
Pzxo + @yYo + @220 = 0
at the point (x, y, z). If we consider these equations as a system of
cquations in ¢gz, @y, @; then, solving it, we obtain
Pz _ Py _ Pz

Yu Z2u 2y Xu Xu Yu
Yv 2p 2y Xy Xv Yo

In the case of the parametric representation of the surface, the
equation of the tangent plane is

Yu Z2u Xu Yu
Yo 2 Xy Yo
Taking the proportion obtained above into consideration, we ob-

tain the equation of the tangent plane to the surface ¢(x,y,2) =0
at the point (x, ¥, z) in the form

(& — X)pz + (9 — Yoy + (2 — 2)p. = 0.

Zy Xu
Zy Xy

(# — %) — 2) =0.

+ @ —)
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The normal to the surface at the point P is the straight line passing
through P perpendicular to the tangent plane at this point.

Writing down the equation of the normal to the surface, once we
know the equation of the tangent plane, for the different cases of
definition of the surface, does not present any difficulty and hence
is left to the reader as an exercise.

§ 2. Lemma on the distance from a point to a surface.
Contact of a curve with a surface. Suppose @ is a surface and
@ is any point in space. The distance of the point Q from the surface
@ is the greatest lower bound of the distances of points on the
surface from the point (. If the point Q lies on the surface then,
obviously, its distance from the surface equals zero.

LEMMA. Suppose @ is a smooth surface defined by the equation
@(x, y, 2) = 0. Suppose pz2 + @2 + @2 7= 0at the point O(xg, yo,20)
on the surface.

If Q(x, v, 2) is a point in space near O, but not lying on the surface,
then substituting the coordinales of the point Q into the equation of the
surface we obtain a quantity A which has the order of the quantity h,
which is the distance of the point Q from the surface, in the sense that the
ratio Alh tends to a definite limit, different from zero, when the point Q
tends to O, remaining oulside the surface.

ProoF. Since the point O belongs to the surface @, there exists an
e > 0 such that all the points in space at a distance less than or
equal to ¢ from the point O and satisfying the equation ¢(x, y, 2) =0,
belong to the surface @.

Suppose the point Q is at a distance less than ¢/2 from the point O.
Suppose P, is a sequence of points on the surface whose distances
from Q tend to the distance from this point to the surface @. The
points P, form a bounded sequence (their distances from @ are less
than ¢/2), and therefore the sequence P, contains a convergent
subsequence. Without loss of generality, we can assume that the
sequence Py itself converges to some point P. In virtue of the
continuity of the function ¢ in a neighborhood of the point O the
point P satisfies the equation ¢(x, y, z) = 0. It follows from this
that the point P belongs to the surface @. Thus, if a point Q is
sufficiently close to O, the greatest lower bound of the distances of
points on the surface from the point Q is attained for some point P
belonging to the surface.
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We shall now show that the segment P(Q is directed along the
normal to the surface at the point P. Suppose 7 = #(%, v) is any
smooth parametrization of the surface at the point P and that a is
the radius vector of the point Q. Since the function (r(%, v) — a)2
attains its minimum at the point P, we must have

(r —a)-ry =0,

(r —a)-r, =0,

but this means that the segment PQ is directed along the normal to
the surface at the point I.

Suppose %, ¥, z are the coordinates of the point P and that &, », {
are the direction cosines of the normal to the surface at the point P.
The coordinates of the point Q are x, y, z and 4 is the distance be-
tween the points P and Q (Fig. 15).

We have

T=x+4+Eth, ¥=y+nh zZ=2z+4Ch
Since the point P belongs to the surface, we have
@(x + &,y + nh,z + Lh) = 0.
It follows that
@(¥, ¥, 2) + M@zt + ey + @) + 2R =0,

where R is bounded in a neighborhood of the point O.
Dividing this equality by 4 and passing to the limit as @ — O, we
obtain

X, 9,z
#l hy l - — (92 + pyn + 90)(0)-

The expression in the right member is different from zero
inasmuch as it is the scalar product of the parallel nonzero vectors
(6. m, €) and (¢z, 9y, 92)-

This completes the proof of the lemma.

We shall now apply the lemma just proved to the problem of
contact of a curve with a surface.

Suppose @ is an elementary surface and let ¥ be a curve having
the point O in common with @. Suppose 4 is the distance of an
arbitrary point Q of the curve from the surface @ and let d be the
distance of the point Q from the point 0. We shall say that the
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curve y has contact of order » with the surface if #/d® — 0 when
Q —O0.

THEOREM. Suppose D is an elementary regular surface and v is a
regular curve having a common point O. Suppose ¢(x, y, z2) = 0 s the
equation of the surface in a meighborhood of the point O where
@22 + @2 + @2 £ O0at the point O; x = x(t), y = y(t), z = 2(t) is a
regular parametrization of the curve y in a neighborhood of the point O.

Then a mecessary and sufficient condition that the curve y have
contact of order n with the surface @ at the point O is that the conditions

13 i), z(t 0 4 0, @
Pl 0, 20) =0, -9 = . =0
be satisfied for the value of t corresponding to the point O.

ProOF. Suppose the value ¢ = ¢y corresponds to the point 0. As
Q0 —0,t—>t.

According to the lemma, g(x(2), y(t), 2(¢)) is of order equal to the
distance of the point Q from the surface @. It follows that a neces-
sary and sufficient condition that the curve y have contact of order
n with the surface @ is that

p(x(t), y(8), 2(t))

P, y(t), 2) _ |t ~tol"
(8 — r(to)|"

—>0ast —{p.

—7’t0i

Since
7’(1) — 1’(!0)

this means that

p(x(), y(t), 2(2))

0 o) —0ast —l.
— V0

But this ig possible if and only if the function @(x(f), y(¢), z()) and
its derivatives up to and including the n-th order vanish for {=f.
This completes the proof of the theorem.
We shal]l now find the osculating spherc to the curve, i.e. a spherc
which hgé contact of order three with the curve.
Su};pf)se r = 7(s) is the natural parametrization of the curve.
The cequation of the sphere is (r — a)2 = R2, where a is the
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position vector of the center of the sphere and R is its radius. If we
substitute » = 7(s) into this equation and differentiate three times
with respect to s we obtain

(r —a)-r=0,
(r —a)-kin 41 =0,
(r — a)-(k1'n — k121 — k1keb) =
It follows that
(r — a)-kiked + k1'[R1 = 0.

Thus,
(r—a)yr=0,
(r —a)-n=— 1/k,
(r — a)-b = — ki'[ky2ks.

Hence we have

I\e 7 kb Ve
Rzlr_a|=V(k_1)+<k12kz)'

a=vr+ (a—r)=r+ n/ki + bki'[k12ks.

§ 3. Osculating paraboloid. Classification of points on a
surface. Suppose @ is a regular (twice continuously differentiable)
surface and let I’ be a point on @. Suppose U is a paraboloid
containing the point P with axis parallel to the normal to the
surface at the point P. Denote the distance from any point Q on the
surface to the paraboloid and to the point P respectively, by ~Zand 4.

The paraboloid U is called the osculating paraboloid of the surface
at the point P if the ratio 4/d2 — 0 as Q — P. In this connection,
we do not exclude the cases when the paraboloid degenerates into a
parabolic cylinder or into a plane.

THEOREM. At every point P of a regular (twice continuously
differentiable) surface @ there exists a unique osculating paraboloid U,
which tn particular cases may degenerate into a parabolic cylinder or a
plane.

Proor. We introduce rectilinear cartesian coordinates x, y, z in
space taking the point P for origin of coordinates and the tangent
planc at the point P as the x, y-plane, and the normal to the tangent
plane, i.c. the normal to the surface, as the z-axis. We shall show
that the surface @ may be defined in a neighborhood of the pomt P
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by means of the équation z = @(x, y) where g is a twice differentiable
function of x and y such that ¢, = @y = O at the point P. In fact,
the surface @, as we know, permits at least one representation of the
three forms, z = ¢(x, ¥), or y = (¥, 2), or x = x(y, z), where ¢, y
and y are twice continuously differentiable functions. For our
choice of coordinate axes, the requirement that the functions ¢ and
x be twice differentiable excludes the second and third represen-
tations. In fact, if the surface @ can be defined by means of the
equation y = y(x, 2) or x = g(, 2) in a neighborhood of the point
P, then the equation of the tangent plane at the point P would have
the form § — ygz& — v,z = 0, or & — 9 — %22 = 0. In neither one
of these cases do we obtain the plane z = 0, which is the tangent
plane by assumption. Thus, the surface @ permits a representation
by means of the equation z = ¢(x, ¥) in a neighborhood of the point
P, and since the tangent planc to the surface @ at the point P,
Z — @i& — @yy = 0, must be the x, y-plane, ¢z and gy vanish at the
point P. This completes the proof of the assertion.

The equation of the paraboloid U, containing the point P and
having its axis parallel to the z-axis, and also its degenerate
forms, the parabolic cylinder and plane, have the form

z — (a1x + by + anx? 4 araxy + azay?) = 0.

We shall assume that the osculating paraboloid U exists at the
point P. We shall show that it is unique. Suppose

2 — (@1% + b1y + a1x® 4 aexy + agey?) =0

is the equation of the osculating paraboloid. According to the lemma
of the preceding section, substituting the coordinates of the point Q
on the surface into the equation of the paraboloid we obtain a
quantity 4 which has the same order as the distance of the point Q
from the paraboloid in the sense that the ratio /4 tends to a limit
when Q — P. It follows from this that 4/d2 -0as Q@ - P.

We expand the function ¢(x, ) according to Taylor’s formula in a
neighborhood of the origin of the coordinate system. We obtain

¢lx, y) = d(rx® + 250y + 1y?) + (22 + y¥earlx, 9),

where 7, s, ¢ denote the derivatives of the function ¢ and &(x, y) -0
when «x, y — 0. Substituting the coordinates x, y, ¢(x, ¥) of the point
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Q on the surface into the equation of the paraboloid, we obtain
A= —aix —asy + H(r — 2a11)x% + 2(s — ar2)xy + (t — 2a22)y2}+
+ (2 + y¥ei(x, y).

The square of the distance of the point Q from P is
@t = 2%+ y2 £ 2(x, ) = 2% + y2 + (#% + y?)ea(r, ),

where ea2(x,y) - 0as Q — P.

Since the ratio A/d2? tends to zero when x and y independently
tend to zero, this will hold if and only if, say, y = 0 and x — 0. But
in this case,

— mx + 3(r — 2a11)x2 + x2e;
x2 4+ x2ep

Ajd2 =

and, consequently, 4/d2 — O as x — 0 only when @) = O and 2a;1;=rv.
It can be shown, in an analogous manner, that az = 0 and 2ag2 = ¢.
Finally, we show that a5 = s. To this end, we assume that x and y
tend to zero, but in such a way that x always equals y. Then

(s — a12)x2 4+ x2¢;
2x2% 4 2x2¢

Az =

It is clear from this that the condition 4/d2 — 0 as x — O implies the
equality 12 = s.

Thus, if the osculating paraboloid at the point P exists, it is
unique. Its equation with respect to the coordinate system we have
chosen is

(*) z — }(rx% + 2sxy + ty?) = 0.

We shall now show that the paraboloid (*) is indeed the oscu-
lating paraboloid.
In fact, for this paraboloid we have

(x2 1 yBe1
A E 2+ (@ + ¥

This completes the proof of the theorem.

We shall now find the osculating paraboloid at the point P(u, v)
in the case of an arbitrary parametric representation of the surface
r =r(u,v).

We introduce, in space, the cartesian coordinates %, y, z, taking

Adz =

—+0Qasx,y —0.
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the point P as the origin of coordinates, and the directions of the
vectors ¥y, 7y, # as the directions of the coordinate axes. The vectors
74, 7y, # themselves are taken as basis vectors.

Consider the paraboloid

= %{(71‘”"”)5‘72 + 2("1&1)'”)70’ + (7’vv'n)y2}.

We shall show that it is the osculating paraboloid at the point P.
Suppose Q(# + Au, v + Av) is a point on the surface near P.
We draw a straigth line through Q parallel to the normal at the

point P. This line cuts the paraboloid at the point Q’ with coordi-

nates x = Au(l + 1), y = dv(l + £3), 2, where ¢ and &2 - O as

Au, Av — 0.

The distance from the point Q to Q' is

W= |(riu + du, v + Av) — r(u, v))-n —
— H(ruuw n)x2 + 2(ruo-n)xy + (rov-n)y2}.
Expanding 7(# -+ Au, v + Av) according to the Taylor formula and
replacing ¥ and ¥y by 4%(1 + &1) and 4v(l 4 €2), we obtain
B = (Au? 4 Av2)e,

where ¢ — 0 when 4u, 4v — 0.
The distance between the points Q and P equals

7w + Au, v + Av) — 7r(u, v)| = |rydu -+ rpdv+ e\/Zu?:M

In order to show that the indicated paraboloid is the osculating
paraboloid, it suffices to show that the ratio #'/d2 -0 as Q - P,
since the distance from the point Q to the paraboloid is less than or
equal to #’. But

Wjdz — (Au? + 4% e -
(radu + 700 + &/ Au? + Av? )2 (’_uA“ trdv e')2
VAu2 4 Av?
And since

rudu + rydv
VAu? + Av2
is bounded below as 4, Av —~ 0 and e and ¢’ -+ 0, A'/d? — 0.

This completes the proof of the assertion.
The existence and uniquencss of the osculating paraboloid at
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every point of a regular surface permits us to make the following
classification of points on a surface.

1. A point on a surface is called an elliptic point if the osculating
paraboloid at this point is an elliptic paraboloid (see Fig. 16a).

2. A point on a surface is called a Ayperbolic point if the osculating
paraboloid at this point is a hyperbolic paraboloid (Fig. 16b).

3. A point on a surface is called a parabolic point if the osculating
paraboloid at this point degenerates into a parabolic cylinder (Fig.
16¢).

4. A point on a surface is called an u#mbilical point if the osculating
paraboloid at this point degenerates into a plane (i.e. the tangent
plane to the surface at this point) (see Fig. 164).

PP CF

Fig. 16

§ 4. Envelope of a family of surfaces, depending on one or
two parameters. Suppose {S} is a family of smooth surfaces
depending on one or two parameters. A surface F is called the
envelope of the family if the following conditions are satisfied:
1) for every point P on the surface F one can find a surface in the
family which is tangent to F at the point P, 2) every surface in the
family is tangent to I, 3) no surface in the family has a region in
common with F.

ExAMPLE. A smooth surface which does not contain pieces of a
plane, is the envelope of its tangent planes. The family of tangent
planes may be either a one parameter (cylinder) or a two parameter
(e.g. sphere) family.

In geometry and its applications, the problem frequently arises of
finding the envelope for a given family. This problem is resolved, to
the extent known, by the following theorems.

THEOREM 1. Suppose {F.} is a family of smooth surfaces, de-
pending on the parameter «, defined by the equations

p(x,y,2,0) = 0.
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Then, if the smooth surface F is the envelope of this family, it satisfies
the equations

‘p(xr ¥, 2, a) =0, ‘Pa(x' Y, 2, o‘) =0

in the sense that for every point (x,y, z) on the surface F one can give
a value of « such that both the equations ¢ = 0 and ¢, = O are satisfied
by the four quantities x, y, z, and a.

THEOREM 2. The envelope of a two parameter family of smooth
surfaces

(p(x, ¥, 2 «, /3) =0

satisfies the equations

¢lx, 9, 2,4 ) =0, @.% 9,2« =0,
Ppx, ¥, 2, «, B) = 0.

In order to simplify the discussion, we shall make some auxiliary
assumptions concerning the nature of enveloping of the surfaccs of
the family by the surface F. Namely, we shall assume, that for every
point P of the envelope we can specify a region Gp of variation of
the parameters of the family, satisfying the following conditions:

1. For each point Q of the surface F, near P, only one surface of
the family can be found having parameters belonging to Gp.

2. If u, v is any smooth parametrization of the surface F and
a(u, v), f(u, v) (which reduces to only «(#, v) in the case of a one
parameter family) are parameters of the surface, tangent to F at
the point (%, v), then a(x, v) and S(#, v) are smooth functions of
% and v.

Under such auxiliary assumptions concerning the nature of
enveloping F by surfaces of the family, the proof of both theorems
is rather easy. We begin with the first theorem.

The surface of the family which is tangent to the surface F at the
point (%, v) has parameter a{«, v). Hence, we have the identity

o(x(u, v), y(u, v), 2(n, v), «(u, v)) = 0.
Differentiating this identity with respect to # and v, we get

Pz¥u + PyYu + P22u + Puow = 0,
Pzxy + Py¥Vo + @iy + Puoy = 0.

But, in virtue of the fact that the surfaces F and F, are tangent, we
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have
Pz¥u + PyYu + @22u = 0,
PaXy + PyYv + @22y = 0.
Therefore,
Paou =0, @uap=0.

Let us assume that ¢, # O at the point P. Then ¢, # 0 in some
neighborhood of the point P also and, consequently, ay = oy = 0
in this neighborhood, i.e. « = constant. But this means that the
envelope F has a region in common with the surface F, of the
family, which is impossible. So, ¢, = 0 at the point P. This proves
Theorem 1.

We shall prove Theorem 2. As in the case of a one parameter
family, we have the identity

o(x(u, v), y(u, v), 2(u, v), «(u, v), f(u, v)) = 0.

Differentiating this identity and using the condition that the
surfaces of the family are tangent to the envelope, we obtain

Pty + (pﬁﬂu =0,
*) Pty + @pby = O.

We shall assume that at least one of the two quantities ¢, and gg
does not vanish at the point P. Then it is also different from zero in
some neighborhood of the point P. It follows from equalities (*) that

Oy O‘v‘
Bu  Bo
in this neighborhood, and this means that the functions « and g
which are parameters of the family are dependent. But this is
impossible, inasmuch as the family must essentially depend on two
parameters. So, ¢, = gg = 0 at the point P. This completes the
proof of Theorem 2.

=0

§ 5. Envelope of a family of planes, depending on one para-
meter. Suppose F is the envelope of a one parameter family of
planes. We shall explain the structure of the surface F.

Suppose

7-b(a) + a(e) =0

is the equation of the planes of the family in the vector form.
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Without loss of generality, we can assume that the vector b is a
unit vector, inasmuch as the equation can always be divided by
[b(a)| (b(x) 7% 0). Further, we must exclude the case when b does not
depend on «, since a family of parallel planes does not have an
envelope. In fact, b is the normal vector to the envelope, and there-
fore b-dr = 0. If b is a constant vector, it follows from this that
b-r = constant, i.e. the envelope is a plane. A plane of the family,
tangent to the envelope, has, in this case, a region in common with
it, which is impossible.

In the sequel, the independence of & and « will be excluded by a
somewhat greater requirement. Namely, we shall assume that
b'(x) # 0.

The envelope F satisfies the equations
(*) rb+a=0 r¥b+4+a =0.

We shall denote the set of all points in space satisfying the system
(*) by M, and we shall first explain the structure of the set M.
Obviously, if the point (%9, yo, z0) belongs to the set M, then the
entire straight line g, , defined by the equations

7-b(ao) + awo) = O, 7-b'(ao) + @'(ao) = O,

where « is the value of the parameter which together with xg, yo, 2o
satisfies system (*), also belongs to M. Thus, the set M consists of a
one parameter set of straight lines in space.

We consider three planes

(**) 7"b+a=0, r-b'+a’=o, 7'b"+a”=0,

of which the first two define the envelope. The following three
fundamental assumptions can be made regarding these three planes:

1. The three planes (**) have no common points for any value ofa.

2. The three planes (**) intersect in a unique point S which is the
same for all values of a.

3. The three planes (**) intersect in the point S(«) whose position
depends essentially on « in this sense that if #(«) is the position
vector of the point S(«), then #(«) 5 O.

We shall consider the first case. Since the planes (**) do not
intersect, they are parallel to some straight line. Suppose #(«) is a
unit vector along this line. We then have

bn=0 bn=0 b'n=0.
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Differentiating the first two equalities, we obtain
b nt+bnw=0 b n+b-n=0.

It follows that b-#’ = 0, b'-#’ = 0. Since, furthermore, #'+n = 0,
we have n’ = 0. So, # does not depend on «. Further, the vector
b X b is nonzero, and its direction is constant, since it is parallel
to the vector n (b-n =0, b'-n = 0). The position vector of any
point in M can be represented in the form

r=2b 4 ub’ + (b x b).

A and u are easily found from equation (*). And we then obtain the
equation of the position vector of M in the form

7y = (— a)b + (—a'/b'2)b + »(b X ),

where « and » are the parameters. It is easy to verify that 7, X 7,#0.
Thus, in the first case, M isa cylindrical surface. Theenvelope IFhasa
region on this surface.

In the second case, we obtain a conic surface. Its equation is the
same as for a cylindrical surface, but the direction of the vector
b x b depends on «. If we take the point S for the origin of
coordinates, then, as follows from equation (*), a = 0, a" = 0, and
the equation of the surface assumes the simple form

r = »(d X b).

As in the first case, it is easy to verify that 7, X 7, = O everywhere
except at the point S(» = 0).

We now consider the third case. The position vector of any point
in M can be written in the form

(***) r=7F+vb X b).

For fixed «, the vector function 7 gives the straight line of inter-
section of the planes (*). We shall show that the vectors # and
b x b’ are parallel.

In fact, we have
fb+a=0 7b+4+a =0 Fb'+a" =0

Differentiating the first identity and subtracting the second
equation from it, we obtain #'-b = 0. Analogously, from the second
and third equations we obtain #':b’ = 0, whence we have #||b X b’.
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Now it is not difficult to show that the vector function (***)
defines some surface in the region » 7 0. In fact,

7oy X1, = (F +2(b X b)) X (b xXb)=2»bx>b")x(bxb)z#0.

Thus, in the neighborhood of every point not belonging to the curve
r = #(«), the set M represents a surface. We shall show that this
surface is generated by the tangents to the curve » = #(«). In fact,
for fixed « equation (***) is the equation of the tangent to the curve
r = #(«), since the vectors 7" and b X b’ are parallel. Thus, the
surface M is generated by the tangents to the curve » = 7.

The results of the present section may be summarized by the
following theorem.

THEOREM. The envelope of a one parameter family of planes ts, in
most cases, a region either on a cylindrical surface or on a conic surface,
or on a surface generated by the tangenis to a space curve.

It is easy to check directly that conversely, in each of these cases
the tangent planes form a one parameter family. It is suggested that
the reader verify this fact as an exercise.

EXERCISES FOR CHAPTER V

1. Write the equation of the tangent plane to the ellipsoid

at the point (x', ¥', 2').

2z
= 1.
02

Xy
ANSWER; —z + R +
2. Write the equation of the tangent plane to the sphere

Xx=acosvsin4, Yy =acosvcos#, Z=asinv

at the point (0, O, a).
ANSWER: z — a = 0.
3. Show that all the tangent planes to the surface defined by the
equation
z = xg(y/x)

pass through the origin of coordinates.
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4. Show that the surfaces

%2 4- 92 + 22 = ax,
x% 4 92 + 22 = By,
x2+y2+422=yz
intersect orthogonally.
5. Show that the normals to the surface

¥ =¢@{u)cosv, y=¢@u)siny, z=ypu)

intersect the z-axis.
6. Find the surface formed by the normals to the surface

y=xtanz

along the straight line
y=x =Z= :-‘1:/4.

ANSwER: Hyperbolic paraboloid.
7. Write the cquation of the osculating paraboloid to the el-
lipsoid defined in Exercise 1 at the point (0, 0, ¢).

2 2
ANSWER: ch(l —.%.(i__}_ Y ))

a? b2

8. Investigate the character of the points (elliptic, hyperbolic,
parabolic, umbilic) on second degree surfaces.

9. Find the position of the center and the radius of the osculating
sphere of the helix

x=acost, y=asint, z=>bt

at the point (g, 0, 0).
ANSWER: Center (— b2/a, 0, 0); radius a + b%/a.
10. Find the envelope of the family of spheres

(x —a)2 + 92 4 22 = 1 (— oo < a < 00).

ANSWER: Cylinder y 24 22 = 1.

11. Find the envelope of the family of planes which form a
tetrahedron of constant volume with the coordinate planes, x, y,
z>0.

ANSWER: xyz = constant.
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ProBLEMS AND THEOREMS FOR CHAPTER V

1. Prove that if a smooth surface @ and a plane o have only one
point P in common, then the plane « is the tangent plane to the
surface at the point P.

2. Prove that the tangent planes to a translation surface

r=U(w) + V()
along every translation curve (curves # = constant and v = con-
stant) are parallel to some straight line.

3. Prove that the family of confocal ellipsoids, one sheeted and
two sheeted hyperboloids, defined, as is known, by the equations

%2 y2 22
2 At ata_ i~
intersect orthogonally.

4. Prove that if a surface is tangent to a plane along some curve,
then all the points of this curve are either parabolic points or
umbilical points.

5. Suppose @ is a surface and P is a point on @; let « be the
tangent planc at the point P. Prove the following assertions:

a) if the point P is elliptical, then all points on the surface @
sufficiently close to P lie on one side of the plane «;

b) if the point P is hyperbolic, then points can be found on the
surface arbitrarily close to P which lic on either side of the planc «;

c) if the point P is parabolic or umbilical, then either case may
arise (give examples).

6. Prove that under a projective, in particular an affine, transfor-
mation, the property of a point being elliptic, hyperbolic, or an
umbilical point, remains unchanged.

7. Prove that if all the points on a curve y on a surface are
umbilical points then the curve is a plane curve.

8. We shall say that a curve is spherical if all its points belong
to some sphere.

Suppose 7 = 7(f) is some curve and P(f) is an arbitrary point on
it. A necessary and sufficient condition that this curve be spherical
is that the curve defined by the equation

_r(t) — 7(t)
[7(®) — 7(to)|?
be plane. Prove this assertion.

1)
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9. Suppose y is an arbitrary curve on the surface @ passing
through the point P. Show that the tangent to the curve at P lies in
the tangent plane to the surface at this point.

10. Suppose IT is the osculating paraboloid to the surface @ at
the point P. Prove that an arbitrary curve on the surface passing
through P has contact of order two with the paraboloid I7 at this
point.

11. Prove that for an arbitrary analytic transformation of space

2 =g1% 9,2, ¥y =A% .2, 2 =gs*y 2,

where @1, @2, @3 arc analytic functions with nonzero Jacobian, the
property of a curve and surface to have contact of a given order,
remains unchanged.

12. Prove that if the boundary of a surface lies in a plane, then
either this surface is a region in this plane, or the surface contains
elliptic points.

Prove that a closed surface contains elliptic points.

13. Prove that if a straight line has second order contact with a
surface then this line lies entirely on the surface.

14. Prove that the family of surfaces defined by the equations

P, y,2) =

where @ 1s a regular function in the variables x, y, 2z, does not have
an envelope.
15. If all the normals to a surface intersect some straight line,
then the surface is a surface of revolution. Prove this assertion.
16. Prove that if the normals to a surface pass through a common
point, then this surface is either a sphere or a region on a sphere. ,,



CHAPTER VI

FIRST QUADRATIC FORM OF A SURFACE
AND CONCEPTS RELATED TO IT

Suppose @ is a regular surface, » = 7(u, v) is any regular para-
metrization of @, and # is the unit normal vector to the surface at
the point (#, v).

In the theory of surfaces, an important role is played by three
quadratic forms which are related to the surfacc:

dr2, —dy-dn, dn2.

The first quadratic form I = dr2 is positive definite inasmuch as
it assumes only nonnegative values and vanishes only when
du = dv = 0. In fact, if dr2 = 0, then dr = rydu + r,dv = 0. And
since 74 X 7y 7% O, this is possible only when du = dv = 0.

We shall use the notation 742 = E, 747y, = I, 7,2 = G for the
cocfficients of the first quadratic form of the surface. Thus,

I = dr2 = (rydu + 7,dv)2 = ry2du + 2ry-rydudo + r,2dv2 =
= E du? + 2F dudv + G dv2.

In the present chapter we shall consider a number of concepts for
surfaces which are related to the first quadratic form.

§ 1. Length of a curve on a surface. Suppose @ is a simple
surface and ¥ is a curve. We shall say that the curve y lies on the
surface @ if every point of the curve y belongs to the surface.

Let Pgbe a point which the curve and the surface have in common,
suppose 7 = r(#, v) is any parametrization of the surface in a
neighborhood of the point Py, and let » = 7(¢) be any parametriza-
tion of the curve in a neighborhood of this point. Suppose #0, v¢ and
to are the values of the parameters corresponding to the point P.

For sufficiently small 6 each point P(f) of the curve, |t — fo| < 4,
belongs to a parametrized neighborhood of the point Py on the
surface. Consequently, each point P(f) is uniquely assigned the
values «(f) and v(f) in such a way that »(¢) = r(u(¢), v(t)). We shall
call the equations # = u(t), v = v(¢) the equations of the curve on
the surface.
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Suppose @ is a regular surface and y is a regular curve on @.
Let » = r(u, v) and 7 = 7(¢) be their regular parametrizations in a
neighborhood of the point P which satisfy the usual conditions
ru X ¥y 7 0, #'2(f) # 0. Then, in the equations of the curve on the
surface

w=u(t), v=rv()

the functions =(f) and v(f) are regular functions such that
w2(t) + v'2(f) 0.

To prove this assertion it is sufficient to apply the implicit
function theorem to the system of equations

x(t) = x(w,v), y() =y, v), z2() = 2(u,v),

which the functions «(f), v(¢) satisfy as is known from the above
discussion.

Now suppose @ is a general surface and let ¥ be a general curve.
According to the definition, the surface @ is the image of some
simple surface @ under a one-to-one continuous mapping ¢ into space.
We shall say that the curve y lies on the surface @ if there exists a
curve 7 on the surface @ the image of which is the curve  under the
mapping ¢.

It follows from this that if » = »(x, v) is a parametrization of the
surface in a neighborhood of the point ¢(P) and 7 = 7(t) is a para-
metrization of the curve in a neighborhood of this point, then
functions # = u(¢), v = v(!) can be found satisfying the equality
r(t) = r(n(t), v(¢)). Thus, a curve on a surface can always be given in
the neighborhood of each point by means of the equations #=u(f),
v = v(t), where, if the surface and curve are regular, then #(f) and
v(t) are regular functions.

We now consider the length of a curve on a surface. Suppose @ is a
regular surface and » = r(», v) is its regular parametrization. Let ¥
be a regular curve on the surface which is given by the equations
u = u(t), v = v(¢). We shall find an expression for the arc length of a
segment of the curve with endpoints at the points Py(fo) and P(¢).
We have

slto, ) = [ 1 Q)lde = / |7/ (u(t). 00010t =
= [ ldrw,v)] = [ VI,

y(Po,P) y(Po,P)
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We see that in order to measure the lengths of curves on a surface
it is sufficient to know the first quadratic form of the surface. In this
connection, we say that the first quadratic form defines a metric
on the surface and it is frequently called a linear surface element.

The first quadratic form does not define the surface uniquely. It
is easy to introduce examples of various surfaces which have the
same quadratic forms for corresponding parametrizations. But,
generally speaking, for two surfaces taken arbitrarily, there does not
exist a parametrization for which the first quadratic forms of the
surfaces coincide. We shall come back to this question later.

§ 2. Angle between curves on a surface. We shall now
introduce the notion of dizection on a surface. The direction (du:dv)
on a surface @ given by the equation » = 7(u, v) is the direction of
the vector dr = rydu + 7,dv. We shall sometimes call this direction
simply ().

The angle between the directions (du:dv) and (éu:dév) is the angle
between the vectors

dr = rydu 4 7dv and 8 = rydu + r,dv.

We shall find an expression for the angle between the directions
(4) and (8). We have
dr-dr = |dr| |07| cos ¥,

dr2 = Edu? 4 2Fdudv + Gdv? = I(d),
ér2 = Ebu? 4 2Féudv 4+ Gov2 = I(9),
dr-6r = Edudu + F(dudv + dvdu) + Gdudv = I(d, d).

It follows from this that the expression for cos @ is

cos & = I(d, 8)/VI(@)I(9).

We shall say that the curve y on the surface defined by the
equation 7 = 7(u, v) has the direction (du:dv) at the point (, v) if
the vector dr = rydu + 7,dv is the tangent vector to the curve at
this point.

A curve on the surface defined by the equations # = u(t),
v = v(¢) has the direction («'(¢):v’(f)) at the point ((t), v(?)).

If two curves y and % on the surface @ have a common point (%, v)
then the angle between them at the point (%, v) is the angle between
their directions at this point. Thus, the angle between curves on a
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surface is the angle between tangents to the curves and, conse-
quently, it depends on neither the parametrization of the surface
nor on the parametrization of the curve.

ExaMmpLE. The coordinate curves on a surface (i.e. the curves
u# = constant and v = constant) have the directions (0:dv), (d%:0).
Therefore we have the expression

cos & = Fdvdu/V Gdvt VESu® = F/VEG

for the cosine of the angle between the coordinate curves. It follows
from this that the coordinate net on a surface is orthogonal (i.e. the
coordinate curves intersect at right angles) if and only if F = 0.

Suppose that in a neighborhood of the point (#9, v) on a regular
surface there is given a family of curves on the surface by means of
the equations ¢(#, v) = constant, where @,2 + @42 # 0 at the point
(%0, vo). We construct a second family of curves which is orthogonal
to the first. To this end, assuming that the second family exists,
we construct the differential equation for the curves of the second

family.
At the point (#, v) the direction of the curves of the first family
will be (py : — @u). If we denote the direction of the curves of the

second family at this point by (du:dv) then the orthogonality con-
dition for these directions will be

Egyiu + F(pydv — pudu) — Goydv = 0

or
* (Epp — Fou)du + (Fpy — Gey)dv = 0.

This is also the differential equation of the curves of the second
family.

We note that at least one of the coefficients of this equation, that
is, either (Epy — Foy) or (Fp, — Goy,) is different from zero, so that

(Egv — Fou)py — (Fpy — Gou)pu = Epy® — 2Fpypy + Gpu?#0.

As is known from the theory of differential equations, there
exists a function u(#, v) which is different from zero at the point
(4o, vo) (that is, the integrating factor) such that if we multiply
equation (*) by u(«, v) the left member becomes the differential of
some function y(%, v):

U{(Epy — Fou)du 4+ (Fpy — Gou)dv} = dy.

The family of curves on the surface is defined by the equation (%, v) =
constant, and is the family orthogonal to the given family. In fact, a
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curve of the nrst tamily has the direction (g, : — @u) at the point
(#, v}, a curve of the second family has the direction (y, : — pu)-
But

vu = p(Ego — LFou), yo = p(Fpy — Gou).
It follows that
#{(Epy — Fpu)py — (Fpy — Gou)yu} = 0.
But this is the condition that the directions
(@0 — @u), (po: — yu)
be orthogonal.

In a neighborhood of the point (%0, ve) the surface @ can be para-
metrized in such a way that the curves ¢ = constant and y =
constant are the coordinate curves. In fact, that this be so it is
sufficient that the condition
Pu  Po
Yu Yo
be satisfied (sce § 3, Chapter IV). But this condition is satisfied
inasmuch as

— Quyy + Py = E@o? — 2Fpopy + Gou? # 0.
Thus, there exists a regular orthogonal parametrization in a

neighborhood of every point on the surface which is such that one
family of coordinate curves on the surface can be chosen arbitrarily.

#0

§ 3. Surface area. Supposc I’ is a smooth surface and that G is
a region on F which is bounded by a finite number of piecewise
smooth curves (see Fig. 17).
We decompose the region G
into small regions by means
of piecewise smooth curves.
Suppose g is one of these
regions. We choose an arbi-
trary point P In the region g
and project this region onto
Fig. 17 the tangent plane at the point
P If the region g is sufficient-
ly small, then this projection is one-to-one and we obtain a region §
in the tangent plane which is also bounded by piecewise smooth
curves. We denote the area of the region g by o(g).
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We shall understand the area of the regior: G on the surface F
to be the
lim ¥ a(g),

where the summation extends over all regions g in the decom-
position of G, and the passage to the limit is effected under the
condition that the regions g in the decomposition of G decrease
indefinitely with respect to their dimensions.

The above definition of surface area corresponds completely with
the graphic representation of the measurement of area, which is
usually connected with the decomposition of a surface and the
“rectification” of individual pieces. We shall show that the surface
areain the sense of the definition given above in reality possesses the
characteristic property of additivity, and we shall also find the
formula for the computation of area in the case of an arbitrary
parametrization of the surface.

We shall assume, for simplicity of derivation, that a unique smooth
parametrization » = r(#, v) can be introduced on the surface. The
region G on the surface is assigned some region @ in the #, v-plane,
which is bounded by piecewise smooth curves and to the decom-
position of the region G into regions ¢ by means of piecewise smooth
curves there corresponds a decomposition of the region G into
regions g by means of piecewise smooth curves.

We shall now define the area o(g) of the region g. To this end, we
introduce rectangular cartesian coordinates x, y, z and take the
point P on the surface for the origin of coordinates; the tangent
plane to the surface at P is taken as the x, y-plane, and the normal
to the surface at P is the z-axis.

A piece g of the surface F is given in cartesian coordinates by
means of the equations

x=x(u,v), y=yuv), z=2@un79), (W) Cg
The equations
x=2x(u,v), y=9yuv), @v)Cg

define a one-to-one mapping of the region § onto §. The numbers
u, v can be considered to be the curvilinear coordinates in the
region §.

The area of a region, in curvilinear coordinates, is computed, as is
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known, by the formula

o(@) =fgf

The vector 7y X 7, is directed along the normal to the surface and
since the normal at the point P coincides with the z-axis, the
absolute value of the vector 7, X 7, at this point is equal to the
absolute value of its component on the z-axis, i.e.

dudv.

Xu Xy
Yu Yo

= |xuyv - yuxvl-

¥y X
|ruxrvl=‘ w o

Yu Yv

It follows by continuity that for arbitrary «, v in g

Xu Xy
Yu Yo

where ¢, is arbitrarily small provided the dimensions of the region g
are small.
For the sum of the areas o(g) we have

Yol =X fg/ (lru X 7o| + £g(u, v))dudv =
= [[|ru X roldudv + 3 [ [ g dudv.
¢ £

= Iru X 7’0| + ag(u, 'U),

If the decomposition of the region G into regions g is sufficiently
fine the quantities &, are less than an arbitrary small ¢ > 0 in
virtue of the uniform continuity of 7, X 7, in G. Therefore

| £ // egdudv] < & 3 o(g) = eo(G),

g
where o(@) is the area of the region G.
It follows from this that

X o(g) >/ [1ru X roldudy
g

when the region g in the decomposition of the region G decreases
indefinitely. This also proves the existence of the area and gives us
an cexpression for it:

a(G) = [[|ru X 7| dudv.

The additivity of surface area follows from the additivity of the
integral. In fact, supposc the region G is decomposed by means of
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piecewise smooth curves into two regions Gy and Gz, and let G4
and @2 be the corresponding regions in the #, v-plane. We have
S \ru X roldudv = [ [ |ru X ryldudv + [ [ |ry X 7y| dudv.
P . ~

[(2)7 Ga
This means that

a(G) = a(G1) + a(G2),

which expresses the fact that the surface area is additive.

Now, when the additivity of surface area has been proved, in an
actual computation of surface area we can decompose a surface into
parts and in each of these parts we can make use of its respective
parametrization.

In conclusion, we shall show that surface area is defined by only
its first quadratic form. In fact,

[7u X 79|2 = ro27y2 — (ry-7y)2 = EG — F2.

It follows that
0 = //VEG — F2dudy.

In particular, if the surface is defined by the equation z = z(x, y),
we have

o =/[/V1+ p2+ ¢2dxdy.

§ 4. Conformal mapping. Supposc @; and @, are regular
surfaces. A one-to-one and continuous mapping of the surface @,
onto the surface @, is said to be conformal if it leaves the angles
between curves invariant in the sense that corresponding curves on
these surfaces intersect at the same angles.

Suppose @; and @, are regular surfaces and P; and P3 are points
on these surfaces. Let » = 71(%, v) and 7 = 73(#, v) be regular para-
metrizations of the surfaces @, and @; in neighborhoods of the
points P; and Pj respectively; the points P; and Pz of these
surfaces correspond to the values g, vo of the parameters «, v.
Suppose the coefficients of the first quadratic form of the surface,
corresponding to the indicated parametrization, are proportional,
ie.

E1/Es = F1/Fs = G1/Ga.

Then a mapping of a neighborhood of the point P; on the surface
@; onto a neighborhood of the point Ps on the surface ®@; in which
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points with the same coordinates %, v are set into correspondence,
is conformal. To prove this assertion it is sufficient to note that if
y1 is a curve on the surface @;, defined by the equations » = u(f),
v = v(t), then the curve y3 on the surface @2 which corresponds to
y11s defined by the same equations #=wu(f), v=v(f), and then use the
formula for the angle between two curves.

THEOREM. Suppose @1 and Py are regular surfaces and that P, Po
are arbitrary points on these surfaces.

Then there exists a conformal mapping of some neighborhood of the
point Py on the surface @y onto some neighborhood of the point P on
the the surface Ds.

The proof of this theorem is based on the possibility of para-
metrizing a regular surface in a neighborhood of an arbitrary point
in such a way that its first quadratic form assumes the form

I = Au, v)(du 2 + dv?)

with this parametrization.

We shall not carry out the proof of this assertion; we shall only
point out that the surfaces @, and Pgare parametrized in neighbor-
hoods of the points P; and Pj respectively in such a way that a
conformal mapping of a neighborhood of the point P; on the surface
@; onto a neighborhood of the point P on the surface @3 is obtained
by identifying points with thc same coordinates.

In conclusion, we introduce an example of the conformal mapping
of a sphere onto the plane.

Suppose @ is a sphere with radius R and center at the point
(0, 0, R). We consider a mapping of this sphere onto the x, y-plane
which consists in the projection of the sphere from the point S onto
the #, y-plane. Such a projection of the sphere onto a plane is called
a stereographic projection (see Fig. 18).

We shall establish the connection between the coordinates %, §, z
of a point on the sphere and the coordinates of its image (#, ¥) in the
plane. We have

E/x = j|y = (z — 2R)/(— 2R),
52+5,2+(§_R)2=R2

or
#4924 (2 — 2R)z = 0.
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In virtue of the first equation, the last equation can be written as
Ex + yy — 2Rz = 0.
Solving this equation together with the first one, we obtain
& = 4R%|(x? + ¥ + 4RY), § = 4RY|(x2 + 52 + 4RY),
Z = 2R(x% 4 y2)/(x2 + y2 4 4R?2).

P

S

The first quadratic form of the plane is
ax2 + dy?
and the first quadratic form of the sphere w is
dz? + dy? 4 dz2 = 16RY(dx2 + dy?)/(x2 + y2 + 4R2)2.

I‘rom this it is clear that a stereographic projection of the sphere
onto a plane is a conformal mapping.

§ 5. Isometric surfaces. Bending of surfaces. Thc surfaces
P, and Py are said to be tsomelric if there exists a one-to-one
mapping of the surface @; onto the surface @2 under which cor-
responding curves on these surfaces have the same length.

Suppose @, and Pz are regular surfaces and that P, and P3 are
points on these surfaces; let » = 71(u, v), ¥ = 7a(», v) be regular
parametrizations of the surfaces in neighborhoods of the points P;
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and P; respectively. Suppose the first quadratic forms of the surfaces,
corresponding to these parametrizations, are identical. Then a
mapping of a neighborhood of the point P; on the surface @; onto
a neighborhood of the point Py on the surface @, in which points
with the same coordinates #, v are set into correspondence, is
isometric.

In order to prove this assertion, it suffices to note that if the
curve y; on the surface @; is defined by the equations % = u(),
v = v(¢), then the curve on the surface @ which corresponds to it is
defined by the same equations # = u(f), v = v(f), and then use the
formula for arc length of a curve.

Identical surfaces are, obviously, isometric. The converse is not
true in general. It is not difficult to point out examples of isometric
surfaces which are not identical. We shall give an example.

The rectangular region 0 << x << #/2, 0 <<y < | in the x, y-plane
is isometric to the region on the cylinder 2 4 y2 = 1, defined by
the conditions 0 < 2 << 1, x > 0, ¥ > 0. It suffices to note that the
region on the cylinder indicated permits the parametrization
x=cos#, y=sinu, z=0v, 0<u<<m/2, 0<v<l. A linear
element on the cylinder, corresponding to such a parametrization,
is du? + dv2. I'rom this it is clear that the mapping defined by the
equations x = #, y = v, is isometric.

Suppose @) and D3 are regular isometric surfaces. Suppose P; is
any point on the surface @; and let r = r;(%, v) be an arbitrary
regular parametrization of the surface in a neighborhood of this
point.

Then there exists a regular parametrization 7 = 73(%, v) in a
neighborhood of the point Ps on the surface @3 such that the points
of the surface @; under this isometry have the same coordinates #, v
and the first quadratic forms of the surfaces corresponding to these
parametrizations are idcntical.

In fact, a neighborhood of the point P; on the surface @; is the
image of some region G in the #, v-plane under a one-to-one bi-
continuous mapping, which assigns the point P;(#, v) on the surface
to the point (%, v) in the plane. Suppose Psa(%, v) is a point on the
surface @z corresponding, under this isometry, to the point Py(%, v),
and that ra(u, v) is the position vector of Pg. The equation r=7z(%,v)
defines a parametrization of the surface @3 in a neighborhood of the
point Py. The regularity of this parametrization cannot as yet be
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established; this will be done in Chapter IX. We shall assume that
the parametrization = r2(%, v) of the surface ®@; is regular. We
shall show that the first quadratic form of the surface @3 with such
a parametrization coincides with the first quadratic form of the
surface @;.

Suppose y1 is any curve on the surface @; and that » = u(2),
v = v(l) are its equations. The curve on the surface @3 which corre-
sponds to it under the isometry is defined by the same equations.
Therefore

t t
/\/Elu'z + 2F 'y 4+ Gv'2 di =f\/E2u’2 + 2Fau'v’ 4 Ggv'2 dt.
to to

Since this equality holds for any ¢, the integrands are equal. Inas-
much as the curve y; is completely arbitrary, the functions under
the integral signs are equal for arbitrary values #’ and v’, and this
is possible only when E; = E3, F) = F3, G1 = G3. This completes
the proof of the assertion.

The two preceding assertions can be combined into the following
theorem.

THEOREM. A necessary and sufficient condition that a neighborhood
of the point Py on the regular surface @ be mapped isometrically onto a
neighborhood of the point Py on the regular surface ®@g ts that there
exist regular parametrizations of mneighborhoods of these points such
that the first quadratic forms of the surfaces corresponding lo these
parametrizations be tdentical.

Since angles between curves on the surface and surface area are
defined by the first quadratic form of the surface, and isometric
surfaces have identical first quadratic forms for corresponding
parametrizations, angles between curves and areas remain un-
changed under an isometric mapping, i.e. corresponding regions on
isometric surfaces have identical areas.

We have shown by means of an example that different surfaces
may have identical first quadratic forms for corresponding para-
metrizations. The question arises, to what degree is the surface
defined by the first quadratic form and does there exist a surface
having an arbitrarily given quadratic form as its first quadratic
form?

It turns out that a surface is far from being defined ““in the small”
by its first quadratic form. It is known, for example, that the
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following theorem holds. For any sufficiently small neighborhood o
of the point P on an analytic surface there exist surfaces which are
isometric to w and not identical with it.

Some surfaces are defined uniquely “in the large” by the first
quadratic form. Thus, for example, an arbitrary regular closed
convex surface @ is uniquely defined by the first quadratic form in
the sense that any regular surface @ which is isometric to @ is
congruent to @. We can itemize a rather extensive class of infinite
surfaces which are uniquely defined by the first quadratic form.
Any elliptic paraboloid is an example of a surface in this class.

A bending of a surface is a continuous deformation of it under
which lengths of curves on the surface remain invariant. The
bending of a surface can be illustrated graphically by bending a
sheet of paper.

Since lengths of curves remain invariant under bending of a
surface and consequently at any given moment of bending the
surface is isometric to the initial surface, the first quadratic form,
for corresponding parametrization, remains invariant under
bending.

It turns out that the surface is always bendable *“in the small.”
Thus, for example, the following theorem holds: at every point of
an analytic surface which is not an umbilical point there exists a
neighborhood permitting a continuous bending. Theorems on bend-
ing “in the large” under weaker assumptions concerning regularity
are also known.

There exist surfaces “in the large” which do not permit
continuous bending. For example, all closed convex surfaces
are of this sort.

EXERCISES FOR CHAPTER VI

I. Find the first quadratic form for the surface of revolution
x = @(u)cosv, y=@(u)siny, z= yp(u).

ANSWER: I = (92 4 y'2)du2 4 ¢2dv2.
2. Show that a surface of revolution can be parametrized in such
a way that its first quadratic form will have the form

I = du? + G(u)dve.
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3. Find the arc length of a curve defined by the equation # = v
on a surface with
I = du? 4 sinh? udv?
as its first quadratic form.
ANSWER: s = |sinh #s — sinh #y].
4. Find the angle at which the coordinate curves x = %o, y = yo
intersect on the surface z = axy.

ANSWER: cos & = azxoyo/\/ 1 + axg V1 + a2yg2.
5. Show that the coordinate net #, v on the helicoid

x=aucosv, y =ausinv, z=>0by

is orthogonal.

6. Find the family of curves which intersect the rectilinear
generators x = constant of the hyperboloid z = axy orthogonally.

ANSWER: (1 4+ a2x2)y = constant.

7. Find curves on a sphere which intersect the meridians of the
sphere at a constant angle (such curves are called loxodromes).

8. Find the area of the quadrilateral on the helicoid (Exercise 5)
bounded by the curves

u=0, u=bla, v=0 v=1
b _ _
ANSWER: ¢ = (\/2 + In(l + V2))-
9. Show that the areas of regions on the paraboloids

LA IV
2= (a2 4y,
z = axy
which project onto the same region in the x, y-plane, are equal.
10. Show that if a surface permits a parametrization for which the
coefficients of the first quadratic form do not depend on # and v,
then this surface is locally isometric to a plane.

PrROBLEMS AND THEOREMS FOR CHAPTER VI

1. Prove that if U(x, y) and V(x, y) arc the real and imaginary
parts of a function of the complex variable ¥ 4 79, then the areas of
regions on the surfaces

t=Ulxy), z="V(xy)
which project onto the same region in the x, y-plane, are equal.
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2. Prove that there exists a conformal mapping of a surface of
revolution (Exercise 1) onto a plane for which the meridians of the
surface (i.c. the curves v = constant) go over into straight lines
which pass through the origin of the coordinate system, and parallels
(i.e. the curves # = constant) go over into circles with center at the
origin of coordinates.

Consider the particular case when

p(#) = cosu, w(u) = sinu (sphere).

3. Prove there exists a conformal mapping of a surface of
revolution onto a plane for which the meridians and parallels of the
surface go over into the straight lines x = constant, y = constant.
Consider the particular case when the surface is a sphere.

4. Prove that it is impossible to map a sphere locally onto a
plane.

5. If U{x,y) 4+ ¢V (x, ) is an analytic function of the complex
variable ¥ 4 ¢y, for which

Uz Vs

U, v,|7°

at the point (xo, ¥0), then a mapping of a plane onto itself which
assigns to the point with cartesian coordinates x, ¥ the point with
cartesian coordinates Ul(x, y), V(x, y), is conformal. Prove this
assertion.

6. Suppose
ds?2 = Edu?® 4+ 2Fdudv 4 Gdv?

is a line element of an analytic surface. We consider the differential
equation

Edu? 4 2Fdudv 4 Gdv2 = 0

in a complex region. Suppose ¢(#, v) = constant is a solution of
this equation and that U(x, y) and V(x, y) are the real and imagi-
nary parts of the function ¢(x, y). Then if

Us Vu

Uy Vo7 °

a mapping of the surface onto a plane, under which there is assigned
to the point (#,v) on the surface the point in the plane with
cartesian coordinates U and V, is conformal. (The proof of the
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theorem in § 4, Chapter VI, for the case of analytic surfaces can be
based on this assertion.)

7. A mapping of one surface onto another is said to be equiareal if
regions which correspond under this mapping have the same areas.

Prove that if a mapping of one surface onto another is conformal
and equiareal, then it is isometric.

8. Prove that an arbitrary isometric mapping of a plane onto
itself is either a translation or a translation together with a reflec-
tion.

9. Suppose @; and Pz are isometric surfaces and that r=r,(u, v),
r = 7g(w, v) are their paramctrizations. An isometric mapping
consists in corresponding points with the same coordinates.

Suppose D, is a surface defined by the equation 7 = Ar1(x, v) 4
pra(u, v). Prove that the surfaces @,,, and 9, are isometric.

10. Show that there exists an isometric mapping of the helicoid

X=1ucosv, y=usinv, z=mv
onto the catenoid
¥ =wacosff, y=oasinf, z=mcosh(a/m),

under which the meridians on the catenoid correspond to the
rectilinear generators of the helicoid.

11. Prove that an arbitrary helicoid surface permits an isometric
mapping onto a surface of revolution, under which parallels corre-
spond to helicoid lines (Bura’s theorem).

121. A net of curves on a surface is called a Chebyshev net if
opposite sides of any quadrilateral formed by curves of the net are
equal.

A necessary and sufficient condition that the coordinate net on
the surface be a Chebyshev net is that £, = G, = 0. Prove this
theorem.

123. Prove that if the coordinate net is Chebyshevian then the
coordinates #, v can be chosen so that the linear element on the
surface assumes the form

ds? = du? + 2 cos w dudv + dv?,

where w is the angle formed by coordinate curves.
123. Prove that on the translation surface
r=Uu) + V(v
the coordinates curves form a Chebyshev net.



CHAPTER VII

SECOND QUADRATIC FORM OF A SURFACE
AND QUESTIONS ABOUT SURFACE
THEORY RELATED TO IT

Suppose @ is a regular surface and » = r(u, v) is any regular
parametrization of @, and n(«, v) is the unit normal vector to the
surface at the point P(«, v). The second quadratic form of the sur-
face @ is the quadratic form
—dr-dn = (—ry-nu)du? + (— 741y — 7y ny)dudv 4 (— ry-ny)dv2,
We shall use the following notation for the coefficients of this form:

—‘ru'nu:L, —7'u'nv—rv'nu:2M, —rv'nv:N.

Since dr-n = 0 and, consequently,

ad(dr-n) =d? -n 4+ dr-dn =0,
we have
IT = d2%r-n = (Yyu-n)au2 + 2(ryy-n)dudv 4 (74 n)dv2.
It follows that '
L :ruu'n, WI:?’M,'”, N=7—uv'n.

Since # = (r4 X 79)/|ru X 7y, and |ry X 7| = VEG — F2, we
have
Xuu Yuu 2uu
Yu Yu Zu
_ (ruwrare) % Yo % |

72 X 74| VEG — F?
Xuv Yur Zuy
Xu Yu 2y
_ (rwrury) (% Yo 2

72 X 74| VEG — F?
Xvw Yo 2w
Xy Yu 2y
_ (rorury) [ % Y0 %

Xl VEG = F
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In particular, if the surface is defined by the equation z = 2(x, y)

then
). S, V fay Ne__ ‘w
Vitztta? Vitzt+zt Vit nttn?

Since the equation of the osculating paraboloid to the surface for a
suitable choice of coordinates is

z = §(Lx% 4 2Mxy + Ny2),

the classification of points on the surface as elliptic, hyperbolic, and
umbilical points is related to the definition of the second quadratic
form of the surface.

§ 1. Curvature of a curve lying on a surface. Suppose @ is a
regular surface, that » = 7(u, v) is any regular parametrization of
@, and that y is a regular curve on the surface which passes through
the point P(u, v) and having the direction (d#:dv) at this point.
Suppose 7 = 7(s) is the natural parametrization of the curve y.

Consider the scalar product
7""-n. The vector 7' is directed
along the principal normal to the
curve and its magnitude equals
the curvature of the curve. From
this it follows that

" n = kcosd,

where % is the curvature of the
curve and ¢ is the angle formed
by the principal normal to the
curve and the normal to the
surface (Fig. 19). But

Fig. 19

r'om = (ryut'? + 2ryptt’v’ + 7ppv'2 + ruu’’ - r0") n =
= (Tyu m)1'2 4+ 2(ryp - n)u'v’ + (ryy-n)v'e.
Therefore

I cos Ldu? + 2Mdudv + Ndv? II
: cos & = =,
Edu? + 2Fdudv 4+ Gdv? I

The right member of this equality depends only on the direction
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of the curve (at the point P(u, v). Thus,
k cos & = kg = constlant

at the point P(x, v) for all curves ¥ which pass through this point
and have the same direction at P (i.e. the same tangent).
The equation
k cos ¢ = ko = constant

forms the content of Meusnier's theorem.

The quantity & is called the normal curvature of the surface in the
given direction (du:dv). To within sign, it is equal to the curvature
of the curve, which is obtained by intersecting the surface with a
plane perpendicular to the tangent plane and having the direction
(A dv).

REMARK. The set of points common to a surface and the inter-
secting plane in a neighborhood of the point P does indeed represent
a curve. To prove this assertion, it suffices to apply the theorem in
§ 5, Chapter I.

The normal curvature of the surface @ at the point P(x, v) in the
direction (du:dv) equals the normal curvature of the osculating
paraboloid to the surface @ at the point P in the same direction.
In fact, the osculating paraboloid to the surface at the point P
permits the following parametrization

7 = (4 — do)ru + (v — vo)ro % (L — 10)2 +

+ 2M(u — up)(v — vo) 4 N(v — v0)2).

From this it is clear that the first and second quadratic forms of the
surface and of the osculating paraboloid at the point P coincide, and
consequently, the normal curvatures coincide.

We lay off from an arbitrary point P(%, v) of the surface in every
direction (du:dv) a segment equal to |1/k|} where & is the normal
curvature of the surface in this direction. The geometric locus of the
endpoints of these segments is called the indicatrix of curvature of
the surface at the point P (Fig. 20).

We shall now explain what the indicatrix of curvature is. To this
end, we introduce cartesian coordinates into the tangent plane to
the surface, taking the point of tangency as the origin of coordinates,
the straight lines containing the vectors 7, and 7, as the coordinate
axes, and the vectors 7, and 7, themselves as the basis vectors.
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Suppose x and y are the coordinates of the point of the indicatrix
of curvature, corresponding to the direction (di#:dv). We have

1
k

Yorudu + rydv

Mut Yo = | rudu + rodv |

Squaring both members of this equation and noting that x: y=
du : dv, we obtain
Edu? | 2Fdudv + Gdv?

Ex2 4 2F Gy? = =
¥ 2ty o+ Gy |Ldu? 4 2Mdudv + Ndv?|

- Ex? 4 2Fxy + Gy2
" |Lx? 4+ 2Mxy + Ny2 ~

It follows that
|Lx2 4+ 2Mxy + Ny2| = 1.

This is the equation of the indicatrix of curvature.

Fig. 20

Thus, the indicatrix of curvature is an ellipse at an elliptic point
of the surface (LN — M2 > 0), a pair of conjugate hyperbolas at a
hyperbolic point (LN — M2 < 0), and a pair of parallel straight line
at a parabolic point (LN — M2 = 0).

§ 2. Asymptotic directions. Asymptotic curves. Conjugate
directions. Conjugate nets on a surface. A dircction (d#:dv) on a
regular surface @ at the point P(#, v) is said to be an asympiotic
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dirvection if the normal curvature of the surface in this direction
vanishes. Thus, a direction (du : dv) will be asymptotic if and only
if the condition

Ldu? + 2Mdudv + Ndv2 = 0

is satisfied.

From this it follows that asymptotic directions do not exist at an
elliptic point, two asymptotic directions exist at a hyperbolic
point, one asymptotic direction exists at a parabolic point, and
finally, any direction is an asymptotic direction at an umbilical
point.

A curve on a surface is said to be an asymptotic curve if its di-
rection at each point is asymptotic. From this it follows that

Ldu? 4 2Mdudv -+ Ndv2 = 0

is the differential equation of the asymptotic curves.

If a straight line lies on a surface then, obviously, it is an
asymptotic curve.

We note one simple property of asymptotic curves. The tangent
plane to the surface at every point of an asymptotic curve is the
osculating plane. In fact, if the curvature of the asymptotic curve y
vanishes at the point P, then the tangent plane to the surface at the
point P is already the osculating plane inasmuch as it passes through
the tangent to the curve. But if the curvature of the curve y at the
point P is different from zero, then the tangent plane contains the
vectors dr and d?r (the first because the plane is the tangent plane,
and the second because the curve y is an asymptotic curve and,
consequently, it satisfies the condition d2r-# = 0). From this it
follows that in this case also the tangent plane is the osculating
plane to the asymptotic curve.

We shall explain under what conditions the coordinate curves on
the surface, # = constant and v = constant, will be asymptotic.
Substituting successively # = constant and v = constant into the
equation of the asymptotic curves, we conclude that the coordinate
net will be asymptotic if and only if the coefficients L and N in the
second quadratic form vanish.

In the investigation of surfaces, it is sometimes convenient to
parametrize the surface in such a way that the coordinate curves are
asymptotic. Such a parametrization is always possible in a neighbor-
hood of a hyperbolic point on the surface (see § 3, Chapter IV).
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We now introduce the concept of conjugate directions on a surface.

Suppose P is any point on a regular surface @, that (4« : dv) and
(6u : dv) are two directions on the surface at the point P, and that
g’ and g’’ are straight lines passing through the point P and having
directions (du : dv) and (du : dv) respectively. Then the directions
(du : dv) and (6u : 6v) are said to be comjugate directions if the
straight lines g" and g” are polar conjugate with respect to the
osculating paraboloid to the surface at the point P.

It is known from analytic geometry that the condition for polar
conjugacy for the paraboloid

z = }(Lx% 4 2Mxy + Ny?)
is
Ldudu -+ M (dudv 4 dvéu)Ndvév = 0.
This is also a necessary and sufficient condition that the directions
(4) and (d) be conjugate directions.

It is clear from the conjugacy condition for the dircctions
(du : dv), (0u : 6v) that the diameters of the indicatrices of curva-
ture, having the directions (du : dv), (6u : dv), are conjugate dia-
meters. This property of conjugate directions could have been taken
for their definition.

Suppose we have two families of curves y,” and yg” on a surface,
forming a net in the sense that through every point of the surface
there passes exactly one curve of each family. Then the net of
curves, formed by the families y,’ and ", is called a conjugate net
if the curves from different families have conjugate directions
at each point.

If the coordinate net is a conjugate net, then the cocfficient M
of the second quadratic form of the surface vanishes. In order to
verify this, it suffices to write the conjugacy condition for the
directions (du : 0) and (O : év).

In a neighborhood of each point P which is not an umbilical
point, the surface can be parametrized in such a way that the co-
ordinate net will be conjugate, where one family of curves of this
net can be taken arbitrarily just as long as the curves of this family
do not have asymptotic directions.

§ 3. Principal directions on a surface. Lines of curvature.
The direction (du : dv) on a surface is called the principal direction
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if the normal curvature of the surface in this direction attains an
extremal value. Thus, this is nothing other than the direction which
coincides with the directions of the axes of the indicatrix of curva-
ture.

From this it follows that there are two principal directions at
each point of the surface in the general case. Since they coincide
with the directions of the axes of the indicatrix of curvature, the
principal directions are orthogonal and conjugate and, conse-
quently, they satisfy the conditions

I1(d, 8) = Edudu + F(dudv + dvéu) + Gdvév = 0
(which is the orthogonality condition),
11{d, 8) = Ldudu + M(dudv + dvdu) + Ndvdv = 0

(which is the conjugacy condition).
Eliminating 8% and dv from these equations, we obtain

Edu 4+ Fdv Fdu 4 Gdv

Ldu + Mdv Mdu + Nav| —

This is also a necessary and sufficient condition that the direction
(du : dv) be the principal direction. This condition can also be
written in another, much more symmetric, form:

dve  — dudv du?
(*) E F G |=0.
L M N

The principal directions are not defined in two cases: in the case
of an umbilical point, since then any direction is a principal di-
rection at this point (the normal curvature vanishesin any direction),
and in the special case of an elliptic point, when the indicatrix of
curvaturc is a circle; such a point is called a spherical point. At a
spherical point as well as at an umbilical point, any direction is a
principal direction. This situation also shows up in the condition
(*), which defines the principal directions. It is satisfied identically
only in two cases: L = M = N = 0 (umbilical point) and in the
case the coefficicnts of the first quadratic form are proportional to
the coefficients of the second quadratic form (spherical point).

The normal curvatures to a surface, corresponding to the princi-
pal directions, are called the principal curvatures.
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RODRIGUES’S THEOREM. If the divection (d) is the principal
dirvection then dn = — kdr, where k s the normal curvature of the
surface in this divection. Conversely, if dn = Adr in the direction (d),
then (d) is a principal divection.

ProOF. Supposc (6) is another principal direction, perpendicular
to the first. The vector dn, being perpendicular to #, permits the
representation

dn = Adr + udr.

Forming the scalar product of this equation with 6 and noting that
dr-ér = Oin virtue of the conjugacy of the directions (4) and () and
dr-br = 0 in virtue of the orthogonality of these directions, we
obtain

uor2 = 0.

It follows that 4 = 0. Hence, dn = Adr. Forming the scalar product
of this equation with dr, we get

dr-dn = Adr2.

It follows from this that A = — k. This completes the first half of
the assertion.

We shall now prove the converse assertion. Suppose the direction
(d) is such that dn = Adr. We shall show that it is a principal
direction. Suppose () is the direction perpendicular to (4). Then,
forming the scalar product of the equation dn = Adr with é», we get
dn-ér = 0. But this means that the directions (¢) and () are conju-
gate. Since, moreover, they are orthogonal, they are principal
directions.

A curve on a surface is called a line of curvature if its direction
at every point is the principal direction.

It follows from this that

av?  — dudv du?
E F G |=0
L M N

is the differential cquation of the line of curvature.

If the point P on a surface is not a spherical or umbilical point,
then the surface can be parametrized in a neighborhood of P in
such a way that the coordinate curves, i.e. the curves # = constant
and v = constant will be lines of curvature of the surface. If the
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surface is parametrized in this way, then the middle coefficients of
the first and second quadratic forms will vanish.

In conclusion, we shall prove one theorem which in some cases
enables one to find the lines of curvature of a surface quite simply.

THEOREM. If two surfaces indersect a long some curve y under a
constant angle and if this curve is the line of curvature on one of the
surfaces, then it will also be the line of curvature on the other surface.

Proor. Differentiating along the curve y on the first surface, we
have

dny = Adr.

For the second surface, we have
dng = Aedr + uni + wvna.

We now form the scalar product of this equation with #; and #s.
We then obtain
ny-dng = umi? + vny-ny,

ny-dng = uny-ng + vigl.

But na-dng = 0, n1-dne = d(n1-ng) — na-dng = — na-dny = — no
‘Adr = 0. Thus,
(**) ,unlz +wmi-ng =0, uny-ng + vng?2 =

[f a surface is not tangent along the curve y, then 712152 — (n1 - %3)2=
m1 X nz|? 7 0 and, consequently, equality (**) is possible only if
u=v = 0. But then dng = Axdr for the second surface, which
means that y is the line of curvature for the second surface.

If a surface is tangent along the curve 3, then we consider a
surface which intersects the first surface under a constant nonzero
ingle. The construction of such a surface in a sufficiently small
aeighborhood of each point of the curve y does not present any
lifficulty. The curve y will be a line of curvature on this surface.
But the surface so constructed intersects the second of the given
surfaces at the same angle. It follows from this that the curve y will
>e a line of curvature on the second surface.

COROLLARY. If a sphere (or a plane) intersects any surface at a
sonstant angle, then the intersection curve is a line of curvature.

This follows from the fact that on a sphere (or on a plane) every
surve is a line of curvature.
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§ 4. Relation between the principal curvatures of a surface
and the normal curvature in an arbitrary direction. Mean
and Gaussian curvatures of a surface. We shall cxpress the
normal curvature of a surface in an arbitrary direction in terms of
the principal normal curvatures. To this end, we introduce recti-
linear cartesian coordinates x, y, z taking the tangent plane to the
surface at an arbitrary point O as the x, y-plane, and the normal to
the surface as the z-axis. We shall choose the directions of the ¥ and
y-axes so that they coincide with the principal directions at the
point O.

Suppose z = z(x, y) is the equation of the surface in a neighbor-
hood of the point O with such a choice of coordinates. At the point
0, z; = 0, zy = 0. Therefore,

I = dx? + dy?,
Il = rdx® + 2sdxdy + tdy?

at the point O. Since the directions (0 : dy) and dx : 0} at the point
O are conjugate, being principal directions, we have s = 0 and
consequently,

I1 = rdx? + tdy2.
It follows that the normal curvature in any direction (dx : dy) is

rdx? + tdy?

*) = I

x2 + dy
Taking the directions (0 : dy) and (6« : 0) we see that » and ¢ are
the principal curvatures.

Suppose ¥ is the angle formed by an arbitrary direction (dx : dy)
with the principal direction (dx : 0), g is the normal curvature in
this direction, %1 and %2 are the principal curvatures corresponding
to the dircctions (dx : 0) and (O : dy), respectively. Then, from the
expression for the normal curvature (*), we obtain Euler’s formula
for the normal curvature in an arbitrary direction,

ks = k1 cos? & + kg sin2 §.

It follows from the Euler formula that in order to obtain the
normal curvature of a surface in any direction, it suffices to know
the principal curvatures of the surface. We shall find the expression
for the principal curvatures in the case of an arbitrary parametric
representation of a surface.
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Suppose %1 and k3 a:e the principal curvatures of the surface and
suppose for definiteness that k1 > k2. In such a case, as we know, &;
is a maximum and %2 is a minimum of the ratio of the quadratic
forms,

II LE2 4+ 2Mé&np + Ny

T E& + 2Ffn + Gn2 '

Suppose &, 7j are the values of the variables & and # for which this
ratio attains its maximum (we already know the existence of such &
and %). Then, for all £ and 7,

I — kI <0,

where equality holds for £ = £ and % = 4. If follows from this that
for these values

(I — kud)y =0,
(I — k)’ =0,

1.e.
LE + My — Iy(EE + F7) =0,
ME + Nij — hy(FE + G7) = 0.

Eliminating £ and 7 from these equations, we obtain the following
equation for &;
— RkE, M —kF

L =0
M—kF, N—=khG|

Carrying out the analogous reasoning for k2, we obtain the same
equation. Thus, the principal curvatures %; and k2 are the roots of
the quadratic equation

L —RE, M —FRF
M —kF, N —kG

-
ie.
R2(EG — F?) — k(LG — 2MF + NE) + LN — M2 = 0.
We shall now define the concepts of mean and Gaussian curva-

tures of a surface. Half the sum of the principal curvatures of a
surface

H = 1}(}61 —+— kz)

is called the mean curvature of the surface.
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The nomenclature ‘“‘mean curvature” is justified by the following
properties of it.

If kg and &, are the normal curvatures of a surface in two
2
mutually perpendicular directions, then half their sum equals the

mean curvature of the surface.
The mean value of the normal curvatures of a surface at a given

point on the surface
2m

1
kg dO
2nf ¢
0

equals the mean curvature of the surface. Both these properties are
obtained without difficulty from Euler’s formula.

The product of the principal curvatures of a surface is called the
Gaussian curvature, or the total curvature, of the surface,

K = klkg.

We shall find the expression for the mean and Gaussian curvatures
of a surface in terms of the coefficients of the first and second
quadratic forms.

Inasmuch as the principal curvatures k1, %2 of the surface satisfy
the equation

k2(EG — F?) — k(LG — 2MF 4+ NE) + LN — M2 =0,
then in virtue of the properties of the roots of a quadratic equation
we obtain

LG — 2MF + NE
H=Y(ky + ko) =1

EG — Fz ’
LN — M2
:kk —_ —— .-
K=bb="%c"m

In particular, if the surface is defined by the equation z=z(x, ),
then

b o (L4 a0 — 2pgs + (1 + 1%
: (4 2%+ ¢3™
. rt — s2

S+

’
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where $, ¢, 7, 5, t is the usual notation for the partial derivatives of
the function z(x, y).

We note that the sign of the Gaussian curvature is defined by the
expression LN — M?2. Therefore, the Gaussian curvature is positive
at elliptic points, negative at hyperbolic points, and equal to zero at
parabolic and umbilical points.

A necessary and sufficient condition that the point P on a surface
be an umbilical point is that the mean and Gaussian curvatures at
this point be equal to zero.

In fact, the normal curvature in any direction vanishes at an
umbilical point. In particular, the principal curvatures are equal to
zero, but then half their sum and their product equals zero, i.e. the
mean and Gaussian curvatures vanish. Conversely, if the mean and
Gaussian curvatures vanish, then the principal curvatures vanish
and, consequently, the normal curvature in any direction equals
zero. But then the second quadratic form vanishes identically, i.e.
the point P is an umbilical point.

Fig. 21

Suppose M is any set of points on a surface. We mark off from an
arbitrary point O unit normal vectors to the surface at points of the
set M. The ends of these normals form some set M’ on a unit sphere.
This set is called the spherical image of the set M (Fig. 21).

There exists a remarkable relation among the area of a
surface, the area of its spherical image and the Gaussian curvature
of the surface. This relation is expressed by the following theorem.

GAuss’s THEOREM. The ratio of the area of the spherical image of a
region on a surface to the area of this region tends to the absolute value
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of the Gaussian curvature at a prescribed point O of the surface, when
the region shrinks down to this point.

We shall carry out the proof of this theorem under the assumption
that the Gaussian curvature does not vanish at the point O and that
the region G, which shrinks to the point O, is bounded by a finite
number of piecewise smooth curves. The situation is this that the
spherical image of the region G cannot be a region if the Gaussian
curvature vanishes at the point O. Therefore, in order to consider
the general case, we must define the concept of area for an arbitrary
sct.

Thus, suppose O is either an elliptic or hyperbolic point on the
surface and that G is a region, lying in a sufficiently small neighbor-
hood of the point O, bounded by a finite number of piecewise smooth
curves.

We shall parametrize the surface in a neighborhood of the point O
in such a way that the coordinate curves which pass through the
point O are in the direction of the principal directions at this point.

The equation

7 = n(u, v),

where #n(x, v) is a unit normal vector to the surface, represcnts the
parametrization of the unit sphere in a neighborhood of the point 0’,
corresponding to the point O on the surface. In fact, the condition
#y X My 7 0 is satisfied in an obvious manner at the point O’ since
Ny = — kivu, 1y = — korp, and by continuity it is also satisfied in
some neighborhood of this point. The sphericalimage G’ of the region
G, if the region G lies in a sufficiently small neighborhood of the
point O, represents a region bounded by a finite number of piecewisc
smooth curves. Its area is given by

o(G) = [[ |ny X nyldudv.
@

Since the area of the region G is
a(G) = [ |ru X 7y|dudo,
@
we have

a(G") |74 X 7y|(0)
(G 17u X 75/ (0)

= |k1ka).

This completes the proof of the thcorem.

Pogorelov, Diff. Geometry.
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§ 5. Ruled surfaces. A surface @ is called an elementary ruled
surface if a straight line passes through every point P of this__gf_agé,
where the line has an interval, containing P, in common with
the surface but the endpoints of this interval do not belong to
the surface.

ExAMPLE. Suppose a(#) and b(u) are two vector functions,
defined in a neighborhood of the point # = ug, which satisfy the
conditions b(up) # 0, b(uo) X a’(ug) # O at this point. Then the
vector equation

*) r = a(u) + vb(u), |u—uo| <e |y <e

defines an elementary ruled surface for sufficiently small e.

In fact, for sufficiently small ¢ 7, X 7y # 0, inasmuch as
ru X ¥y = a’'(ug) X b(uo) 7 O when u = ug, v = 0. If follows from
this that for sufficiently small ¢ equation (*) does indeed define a
surface. The fact that this surface is an elementary ruled surface
follows from the situation that a straight line » = a(#') 4 #b(x')
passes through any point (#’, ') of this surface. The segment
|#| < e of thisline lies on the surface, and its endpoints do not belong
to the surface.

A surface @ is called a general ruled surface if each of its points
has a neighborhood which is an elementary ruled surface.

Rectilinear segments on a ruled surface are called rectilinear
generators.

Inasmuch as rectilincar generators pass through every point of a
ruled surface, there is a direction at every point of a ruled surface
in which the normal curvature of the surface vanishes. It follows
from this that a ruled surface cannot have clliptic points. The
Gaussian curvature of a ruled surface is negative or equal to zero.

Rectilinear generators are asymptotic curves.

We shall find a local parametric representation of an arbitrary
ruled surface, i.e. a parametric representation in a sufficiently
small neighborhood of any point P.

We shall distinguish the following cases:

a) The point P is hyperbolic;

b) All points in a sufficiently small neighborhood of the point P

are parabolic;

c) All points in a neighborhood of the point P are umbilical

points.
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In the first case, at least one family of asymptotic curves in a
neighborhood of the point P are straight lines. In fact, either all the
asymptotic curves in a neighborhood of the point P are straight
lines, or one can find asymptotes y arbitrarily close to P which are
not straight lines. But then all asymptotes which intersect y are
straight lines.

If » = a(u) is the equation of the asymptote y and b(%) is a unit
vector in a second asymptotic direction, then the surface can be
defined by means of the equation

r = a(u) + vb(u)

in a neighborhood of the point P. L

We shall now consider the second case. In this case, the rectilinear
generators are lmes of curvature “Onl nly one rectilinear generator
passes through each pomt Q near P We draw the curve y, r = a(u),
through the point P on a surface in such a way that its direction at
the point P does not coincide with the direction of the generator.
The unit vector b(x) on the generator is a regular function of «.

The surface can be defined by the equation
r = a(u) + vb(u)

in a neighborhood of the point P.

We finally consider the third case. Since all points near P are
umbilical pomts and any direction is a pr1nc1pal direction at an
umblhcal point and the normal curvature in any direction equals
zero by “Rodri rigues’s theorem d» = 0 in a neighborhood of the
pomt P. Consequently, # = ng = constant. Since #-dr = 0, we
have ng-(r — 7o) = 0. Thus, in the third case a sufficiently small
neighborhood of the point P is a region on the surface. Suppose 4y
and bp are any independent constant vectors, belonging to this plane.
Then in a neighborhood of the point P the surface can be defined by

means of the equation

Y = aolt + bo'U.

Thus, in all the cases we have considered, a ruled surface permits
a parametrization of the form

r = a(u) + vb(u)

in a sufficiently small neighborhood of every point.
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We shall now consider an important class of ruled
so-called developable surfaces.

A surface @ is called a developable surface if it is locally isometric
to a plane, i.c. if every point of such a surface has a neighborhood
which 1s isometTic to a region in a plane.

It turns out that a necessary and sufficient condition that a
surface be developable is that its Gaussian curvature vanish cvery-
wB__E. Thus, developable surfaces may be defined as surfaces with
zero Gaussian curvature. T )

A surface which is the envelope of a one parameter family of
planes is a developable surface. In order to verify this, it is sufficient
to calculate the Gaussian curvature of the envelope, starting with its
parametric represcntation obtained in § 5, Chapter V.

We shall study the structure of a developable surface in a
neighborhood of an arbitrary point P. We shall distinguish two
cases:

a) The mean curvature H = 0 in a neighborhood of the point P;

)_'»b) The mean curvature H # 0 in a neighborhood of the point P.

Ja the principal curvatures of the surface vanish at
every point near the point P. Consequently, every point near P is an

umbilical point.mas was shown above, the point P has a
m which is a plane region.

We shall now consider the second case. We introduce a coordinate
net, consisting of lines of curvature, on the surface. Suppose the
u-curves (i.e. v = constant) are those lines of curvature along which
the normal curvature of the surface vanishes.

By Rodrigues’s theorem, #y, = 0, since the normal curvature
vanishes in the direction of the u-curves. It follows from this that the
normals to the surface along the #-curves are parallel.

We shall show {hat the w-curves are Straight lines. We have
ry-n = 0. It follows that along a #-curve, {r — 7o)-#n = 0. Thus,
the #-curve lies in a plane. Further, the vector #, s~ 0 is directed
along the normal to the #-curve. And since (#y)y = (#y)y = O, the
normals to the u-curves are parallel. But this can hold only when
the u-curves are straight lines.

Thus, in bo;/h_gggs, adevclopable surfaceisaruled surfacesuch that

the tangent plane remains unchanged along the rectilinear generators.
Thus, in the sccond of the cases considered, the tangent plane
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depends only on one parameter (v) and, consequently, the surface is
the envelope of a one parameter family of planes.

——

§ 6. Surfaces of revolution. A surface F is said to be a surface
of revolution if it is generated by rotating some curve about an axis.
Curves of intersection of the surface with planes passing through the
axis of ratotion are called meridians and curves of intersection with
planes perpendicular to the axis are called parallels (Fig. 22).

We shall now derive the equation of the surface of revolution
which is generated by rotating the curve

x=ou), z=yu)
lying in the x, z-plane, about the z-axis. The point (¢(#), 0, (%)) on
the curve y goes over, upon rotation of the curve through an angle
v, into the point
(p(n) cos v, p(u)sin v, y(u)).
It follows that the equations of the surface of rotation are
x = @(u)cosv, y = @(u)sinv, 2z = yp(u).
The curves v = constant are meridians of the surface and # = con-

stant are parallels.
We shall now find the first quadratic form of the surface. We have

E = (¢p'cosv)? + (¢' sin )2 + y'2 = ¢'2 + 92,
F = (¢’ cos v)(— @ sin v) + (¢’ sin v)(p cos v) = 0,
G = (— @sinv)2 + (p cos v)2 = 2.
It follows that
ds? = (¢p'2 4 y'2)du? + @2dv2.

We see that the meridians and parallels form an orthogonal net
(F = 0). This is, moreover, geometrically obvious.

We now find the second quadratic form. We have

n

¢ ' cosv, ¢@'sinv, p
¢ cosv ¢'sinv ¢
—@sin v pcosv O ey — v'e")
EG — F? e+ w’z)
—¢'siny, ¢ cosv, O
p'cosv ¢'sinv o’
—@sinv @ cosv O

M: =
EG — F? 0

L=
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—@ cosv — @siny O |
¢’ cos v ¢ sinv o’
N—i"? sin v gcosv O '
- EG — F? T Tyt
It follows that
1 . 1t ld 2
quv(w«r, wf'”)duz v
e + %) 9’2+ y'2

We see that the parallels and meridians form a conjugate net
(M = 0). Since, furthermore, this net is orthogonal, parallels and
meridians are lines of curvature. This is also clear geometrically,
because planes, passing through the axis and perpendicular to the
axis intersect the surface of revolution at a constant angle. Ac-
cording to the corollary to the theorem in § 3, Chapter VII, the
intersection curves (i.e. the meridians and parallels) must be lines
of curvature.

Concerning the first and second quadratic forms of a surface of
revolution, it is essential to note that the coefficients of these forms
depend only on #«.

We shall find the principal curvatures of a surface of revolution.
Suppose &1 is the curvature of a meridian and %, is the curvature of
a parallel, 4 is the angle formed by the tangent to the meridian
with the axis of the surface. Since the meridian plane intersects the
surface orthogonally, the normal curvature of the surface in the
direction of the meridian equals the curvature of the meridian, i.e.
k1. According to Meusnier’s theorem, we obtain the value kg cos ¢ for
the curvature of the surface in the direction of the parallels. The
quantity %2 cos & has a simple geometric interpretation. Namely, if
we denote by 4 the length of the segment of the normal to the surface
to the point of intersection with the axis (see Fig. 22), then

kg cos & = 1/d.

In concluding this section, we shall construct an example of a
surface of revolution with constant negative Gaussian curvature.

Suppose the z-axis is the axis of revolution. The equation of the
meridian on the surface in the x, z-plane is ¥ = x(z). The normal
curvature of the surface in the direction of the meridian is

By =")(1 + %'2)%,
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The normal curvature of the surface in the direction of the parallelsis
ke = —1/{x(1 4 x'2)}}.

It follows that the Gaussian
curvature of the surface is

K= —x"[{x(1 + x'?)2}.

Multiplying this equation by
xx’, we get
K , . xlxlf
2 = .
(i +#2

Integrating, we have

Kx2 4 ¢ = 1)(1 4 22

where ¢ is an arbitrary constant. Fig. 22
Set ¢ = 1 so that further integra-
tion in terms of elementary functions will be possible. Then

Kx?2 = —x'2/(1 + x'2).
We now sct x° = tan &. Then

1
1{x2 = — Sinz 19, X = Sirl 19

Further, we have

a 1 29 1 1
Y ot d, dr= e 2 Vg — »—:< _ sinﬂ)dﬁ.
— K sin?d vV— K\sind
It follows that
1
z =——=——{(cos ¥ + In tan 4/2) + c.
vV—K

The constant ¢ is unessential since it corresponds to a translation of
the meridian parallel to the axis.
The equations of the meridian are

1 .
X = ———=S5In 19,

vV—K
1

2 = ————(cos # + In tan 94/2).
\/—K( /
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This curve is called a fractrix. Its distinguishing property is the fact
that the segment of the tangent from the point of tangency to the
z-axis is constant. Thus, the surface we have just found is obtained
by rotating a tractrix. This surface is called a pseudosphere. Its

equations are

X = —-———sin J cos ¢,

1
y = —=——=sin¥sin ¢,

V—K
z= 71—1{ (cos & + In tan 9/2).

Fig. 23 gives us an idea of the shape of the pseudosphere.

Fig. 23

EXERCISES FOR CHAPTER VII

1. Compute the second quadratic form for the helicoidal surface
X=1ucCosSvU, Yy=wusinv, z=o.

ANSWER: 2dudv/u.

2. Find the normal curvature of the paraboloid z = }(ax2 + by?)
at the point (0, 0) in the direction (dx : dy).
adx? + bdy?

dx? + dy?
3. Show that for an arbitrary parametrization of a plane the

second quadratic form vanishes identically; show that the second
quadratic form is proportional to the first for any parametrization

of the sphere.
4. Find the asymptotic lines to the surface

ANSWER: k =

z———i-i—l.
y
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1 1
ANSWER: % = 1y, — — — = (3.
22 y2
S. Determine the asymptotic curves to the catenoid

x =coshucosv, y=-coshusinv, z2=u.

ANSWER: # 4 v = constant, # — v = constant.

6. Show that on the helicoid one family of asymptotic curves
consists of straight lines and that the other consists of helixes.

7. Find the family of curves on the surface

ax? + by2 4 ¢cz2 = 1

which is conjugate to the family y = constant.

ANSWER: 1 — by2 = Ax2, where 1 is an arbitrary constant.

8. Show that the translation curves (# = constant, v = constant)
on the translation surface

r=Uw) + V()

form a conjugate net.
9. Determine the principal curvatures of the paraboloid

z=a(x2 4+ y?)
at the point (0, 0, 0).
ANSWER: 24, 2a.
10. Determine the lines of curvature on the helicoid

x=wucosv, y=wusinv, z=cv.
ANSWER: In(# 4+ Vu2 + c_2) — v = constant,
In{u + Vu2 + ¢2) + v = constant.

11. Find the lines of curvature of the hyperboloid z = axy.

1
ANSWER: -—
a

(\/l_:—-@ + In(ay + \/-lv_ﬁ—_;é-y_z)) +

12. Find the mean and Gaussian curvatures of the hyperboloid
z = axy at the point x =y = 0.

ANSWER: K = — a2, H = 0.

13. Show that the mean curvature of the helicoid equals zero.
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14. Show that the mean curvature of the catenoid

Va? 4 y2

2 = a cosh——
a

equals zero.
15. Show that if the mean curvature of a surface vanishes then
its asymptotic net is orthogonal.

PROBLEMS AND THEOREMS FOR CHAPTER VII

1. Suppose r = r(u, v) is an arbitrary surface, (#, v§) is a sequence
of points converging to the point (uo, vo) and (a : b) is the direction
in which the normal curvature to the surface at the point (o, vo) is
different from zero.

Show that if

U — 1o a

Vg — Vo b

as k — oo then thedirections of thelines of intersection of the tangent
planes to the surface at the points (#o, vo) and (uk, vx) converge to
the direction conjugate to (a : b).

2. Prove that under a projective, and in particular under an
affine, transformation of a surface, a conjugate net goes over into
a conjugate net; and an asymptotic net goes over into an asymptotic
net.

3. Prove Koenig’s theorem: A net on an arbitrary surface is
formed by the curves of intersection of the surface with a bundle
of planes which pass through an arbitrary straight line g and
the contact curves of surface with conicoids having vertices on
the straight line g. This net is conjugate.

4. Prove that translation curves on the translation surface

r=Ulw) + V()
(i.e. the curves # = constant, v = constant) form a conjugate net.
5. Prove that on the Peterson surfaces
_ U + V()

Ulw) + V(v)

where U and V are vectors and U and V are scalar functions of the
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indicated arguments, the families # = constant and v = constant
form a conjugate net.
6. If every point on a surface is spherical, then the surface is a
sphere or a region on a sphere. Prove this assertion.
7. Find the spherical points on the ellipsoid
%2 y2 22

= 1.
a? c?

8. Prove that if the asymptotic lines of different families have
nonzero curvatures at their common point, then they have curva-
tures which are equal in magnitude but opposite in sign.

The absolute value of the curvature equals the absolute value of
the Gaussian curvature of the surface at the prescribed point (Bel-
trand-Enneper theorem).

9:. Suppose 7(#, v, w) is a vector function of the arguments
u, v, w. Prove that if

ru'rv = rv'rw = rw'ru = O,
then
Tuo Tw = Yow' ¥y = Yyu- ¥y = 0.

92. Suppose we have given three families of surfaces:
@(x,9, z) = constant, y(x,y, z) = constant, x(x, v, z) = constant,
where the Jacobian
D(e, v, %)
D(x,y, 2)

We say that the indicated families form a tr¢orthogonal system of
surfaces if any two surfaces from distinct families intersect at right
angles.

Prove that the surfaces of different families of a triorthogonal
system intersect along the lines of curvature.

93. Find the lines of curvature on the second degree surface

ax? + ay? + y22 =1

by referring it to a triorthogonal system of confocal second degree
surfaces.

101. A surface @ is said to be parallel to the surface F if it is the
geometric locus of the endpoints of segments of constant length
marked off on the normals to the surface . We shall assume the
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corresponding points on the surfaces F and @ to be the endpoints
of the segments mentioned in the definition.

Show that

a) the tangent planes at corresponding points of the surfaces F

and @ are parallel;

b) the parallel property is dual (i.e. if @ is parallel to F, then F

is parallel to @);

c) the lines of curvature of the surface I correspond to the lines

of curvature of the surface @.

102. If the point P on the surface F is neither a spherical point
nor an umbilical point, then in a neighborhood of the point P the
surfaces parallel to F and the developable surfaces generated by the
normals to the surface F along lines of curvature, form a triortho-
gonal system of surfaces. Prove this assertion.

103. Prove that under an inversion, lines of curvature of a given
surface go over into lines of curvature of the transformed surface.

104. Prove that under a conformal mapping of space onto itself, a
sphere goes over into a sphere or a plane. Basing arguments on this
fact, prove in turn that any conformal transformation is obtained
by applying a similarity transformation, a translation, a mirror
reflexion, and an inversion.

11. Express the mean and Gaussian curvatures of parallel
surfaces in terms of the mean and Gaussian curvatures of the given
surface and the distance between the parallel surfaces.

12;. Suppose the surface F is

r = f(u,v)

undergoes a deformation for which it goes over into the surface F,
in time ¢
r = f(u, v) + tA(n, v)n.

Prove that for small ¢ the change in the area of the surface sub-
jected to a deformation equals, to within terms of order ¢,

2T [ Hdo,
2

where H is the mean curvature of the surface F and do is an element
>f area on this surface.

123. The surface F is said to be minimal if every point P of this
surface has a neighborhood bounded by a simple curve y such that
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any surface with boundary y has an area which is greater than or
equal to the neighborhood w of the surface F. Prove that a mini-
mal surface has zero mean curvature.

13. Prove that a spherical mapping of a minimal surface in a
neighborhood of every point, which is not an umbilical point, is
conformal.

14. Show that the area of a region G bounded by the curve y on
a minimal surface equals

s=14/(r,dr,n)
y

(Schwartz’s formula).

15. Prove that if a minimal surface is a ruled surface then it is
either a plane or a helicoid.

16. Prove that if a minimal surface is a surface of revolution,
then it is either a plane or a catenoid.

17. Find by quadratures all surfaces of revolution with constant
Gaussian curvature.



CHAPTER VIII

FUNDAMENTAL EQUATIONS OF THE
THEORY OF SURFACES

In the two preceding chapters we considered a number of prob-
lems concerning the theory of surfaces for the solution of which it
was sufficient to know only the first and second quadratic forms of
the surface.

The question naturally arises, to what degree do the first and
second quadratic forms of the surface define the surface and what
conditions ought the quadratic forms

Edu? 4 2Fdudv + Gdv?,
Ldu? 4 2Mdudv 4+ Ndv?

satisfy in order that there exist a surface for which these quadratic
forms are the first and second quadratic forms respectively?

The answer to this question will be given in the last section of
the present chapter by the Bonnet theorem.

§ 1. The Gauss formula for total curvature of a surface.

We shall now obtain an expression for the Gaussian curvature of a
surface in terms of the coefficients of only the first quadratic form
and their derivatives.

We already found an expression for the Gaussian curvature in
terms of the cocfficients of the first and second quadratic forms,
namely
LN — M2

EG — F?

Substituting everywhere the expressions for the coefficients of

the second quadratic form

K =

. (Tuu?u?v) M — (Tus?”u?v) N — (7oo?u?v)
VEG — F?’ VEG — F?2’ VEG — F2
we have
1
K= —‘——2{(7uu"u"v)(7vv"u7v) — (7uvrurv)2}-

(EG — F?)
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It follows from this, applying the known identity

(a1-az) (a1-b2) (a1-co)
(alblcl) (azbzcz) = (bl'az) (blbg) (b]_‘Cz) y
(c1-az) (c1-b2) (c1:ca)

that
1 Yuw Vo Yuuw VYu Yuu ¥y Tus?  Tuv'Tu Tuo' 7o
K= (ﬁ__}«‘—z)z Tu Ty E F |\ —\ry'typ E F =
Yo Tyo F G | |roruy F G
1 Yuu Too—"uv® Yuu'Tu Tuu' "y 0 7up?uZuv v
= (E—G—F—z)z Yo Py E F |—lry-ryy E F
Yo' Tow F G Yo' ¥uy F G

Differentiating the expressions
rui=FE, vy ry=F, 1,2=0(G
with respect to # and v, we obtain

Tuu'Tu = $Eq,
Yyp Ty = %Ev.
Yoo Ty = 3Gy,
Yup ¥y = %Gu,
Tuu'?y = Fy — 3E,,
Toory = Fy — 3Gy.
If we now differentiate the fifth equation with respect to v, the

fourth with respect to #, and then subtract the resultant
equations termwise, we obtain

Yuu' Yoo — Tuv® = — 3Guy + Fuy — 3E 0.

Substituting the values thus obtained into the expression for the
Gaussian curvature, we get

l ('—%Guu‘l'Fuv_%Evv). %Eu, (Fu — %E'D)
K= (Fo—3Ga) E F |-
(EG — F2p2 3G, F G
o’ %Ev: %Gu
G, F G

Thus, the Gaussian curvature of a surface may be expressed in
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terms of the coefficicnts of the first quadratic form and their
derivatives. It follows that the following corollaries hold:

1. Isometric surfaces have the same Gaussian curvature at
isometrically corresponding points. In particular, the Gaussian
curvature of a surface remains invariant under bending.

2. Since developable surfaces are by definition locally isometric
to a plane, and a plane has zero Gaussian curvature, the Gaussian
curvature of developable surfaces vanishes everywhere.

3. The first and second quadratic forms of a surface are not
independent. Namely, the discriminant LN — M2 of the second
quadratic form of a surface may be expressed in terms of the coef-
ficients of the first quadratic form and their derivatives.

In conclusion we note that if a surface is parametrized in such a
way that the first quadratic form is

I = du? + Gdve?,
then the Gaussian curvature of the surface is

In order to verify this, it suffices to use the Gauss formula.

§ 2. Derived formulas. The derived formulas for a surface are
analogous to the Frenet formulas for curves. They yield expressions
for the derivatives of the vectors 74, 7,, # in terms of these vectors
and the coefficients of the first and second quadratic forms of the
surface. We shall now proceed to obtain these formulas.

Since the vectors 74, 7y, # do not lie in one planc, an arbitrary
vector permits a representation in the form of a linear combination
of the vectors 7y, 7y, #. In particular,

Yuu = I'lry + Mi?re + Aun,
ruy = I'alry + Tary + A129,
vy = DIaglry + Ieo%ry + Agon,
Ny = an?y + arety + ajon,
Ny = agi?y -+ ag9¥y + agoh.
We shall show that the coefficients I'yy*, Ay, «y can indeed be

expressed in terms of the coefficients of the first and second quad-
ratic forms of the surface.
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We note, first of all, that the coefficients a19 and a«g¢ vanish. To
see this, it suffices to form the scalar product of the two equations
with #. We then get

Ny*'Nn = a9, Nap'H = «20.
But
Ny n = 4n2)y =0, #ny-n=13n,=

In order to obtain expressions for a31 and «12, we shall form the

scalar product of the equation

Ny = 117y -+ a127y
with 7, and 7,. We obtain

— L =ank 4 apoF,

— M = anF + oay2G.
It follows that

— LG+ MF LF — ME
MTTEG ST BT EG—
In an analogous manner, we obtain
NI — MG — NE + MF
M= TEe IR BT T EG_Fr

In order to obtain the coefficients A1, A12, A22 we form the scalar
product of the first threc formulas with #. We get

Ai=0L, Aia=M, A3 =N.

In order to obtain the expressions for the coefficients I'y¥, we
form the scalar product of the first three equations with 7, and 7,,.
We then obtain the following relations for the coefficients I'y*:

[T1E + T?F == LI,

|I'1ulF + IMi2G = Fy — 3E,;

I'olE + INe?F = 3y,

{Fzle + I'2%G = §Gu;

TIgolE +- I'p02F = Fy — 3Gy,

{Fzle + I'a2%G = 3Gy

We can find the expressions for the six coefficients Iy* from

these six equations. We shall not write out the values of the coef-
ficients I'y% ; we shall note only that they can be, in distinction to
the other coefficients, expressed in terms of only the coefficients of
the first quadratic form and their derivatives.

Pogorelov, Iiff. Geometry
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We have thus shown that the derivatives of the vectors 7, 7, #
can indeed be expressed in terms of the vectors 7y, 7y and »# with
coefficients depending only on the coefficients of the first and
second quadratic forms of the surface.

In conclusion, we shall find the coefficients I'y* for the case when
the first quadratic form of the surface is

I = du? 4 Gdv2.
If we set E =1, F =0 in the equations for I'y*, we obtain
It =0, I'ni?2 =0,
I'p! =0, I'2? = 1G4/G,
Tyl = — 3Gy, D322 = 3Go/G.

§ 3. The Peterson-Codazzi formulas. We alrcady know that
the first and second quadratic forms of a surface are not inde-
pendent. One of the dependence relations between the coefficients
of the first and second quadratic forms of a surface is given by the
Gauss formula. It enables one to express the discriminant LN — M2
of the second quadratic form in terms of the coefficients of the first
quadratic form and their derivatives.

We now obtain two new relations between the coefficients of the
first and second quadratic forms of a surface.

We have the obvious equalities

(ruw)y — (Tuv)u =
(rov)u — (Tun)o =

Op
OF
(mu)v — (Mo)u 0.

If in these equations, the expressions in parentheses are replaced
by the derived expressions given in § 2, and after differentiating,
again using the expressions in §2, we obtain three vector equa-
tions of the form

A1y 4+ Biry + C1n =0,
Agry + Bary + Can = 0,
Agry + Bary + Can = 0,
where A, A2, -+, C3 are expressions, constructed in a known

manner, in the coefficients of the first and second quadratic forms
of the surface and their derivatives. We have nine scalar equations
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from these three vector relations,

A4:1=0, B,=0, C1=0,
A3 =0, Byg=0, C2=0,
A3 =0, B3=0, Ca=0.

It turns out that of these nine relations only three are distinct, of
which one is equivalent to the Gauss formula which we obtained
earlier and the other two are

(EG — 2FF + GE)(L, — M. o|F Fe a0
ol u - ’

—(EN — 2FM + GL)(Ey, — Fy) G G, N
(EG — 2FF + GE)(M, — N4) + i ? il =0
— (EN — 2FM + GL)(F, — Gu) . N|

G Gy N

The last two relations were first obtained by Peterson, in a somewhat
different form; they were later obtained by Mainardi and Codazzi.

§ 4. The existence and uniqueness of a surface with
prescribed first and second quadratic forms. The following
theorem, due to Bonnet, holds.

THEOREM. Suppose

Edu? 4 2Fdudv + Gdv?,
Ldu? + 2Mdudv + Ndv?

are to arbitrary quadratic forms the first of which ts positive definite.
Suppose the coefficients of these forms satisfy the Gauss-Peterson-
Codazzi conditions. Then there exists a surface, unique lo within
position in space, for which these forms are the first and second
quadratic forms respectively.

ProoF. Let us consider the following system of differential
equations for the vector functions &, #, ¢:

§u = I'nlé + I'u?yp + L¢,
&y = IN2lé + a2y -+ ME,
nu = Ioté 4 a2y + ME,
N = 221§ + Is22y + NE,
{u = an1é + a12n
{o = az1f + az2n
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where the coefficients I'y¥ and «y are expressed, in a known
manner, in terms of the coefficients of the prescribed quadratic

forms.

It is known from the theory of differcntial equations that this
system has a unique solution for given initial conditions (i.e. the
values of £, %, { are given in some point (o, vo)) if the integrability
conditions are satisfied, i.e. if the equations

(I'112é + 'y + LE)y — (IM21€ 4 ey + ME)y = 0,
(l121€ + 1122 + M)y — (I'221é 4- Iae?n 4 N()y = 0,
(@116 4 a19m)p — (2218 + aon)y = O

are identically satisficd in virtuc of the equations of the system.
Thus, the integrability conditions reduce to the Gauss-Peterson-

Codazzi conditions.

Since the Gauss-Peterson-Codazzi conditions are satisfied for the
given quadratic forms, the integrability conditions are satisfied for
the system of differential equations considered.

Suppose &o, 10, {o are three vectors which satisfy the conditions

£02 = E(uo, vo), &o'mo = F(uo, vo), 702 = G(uo, vo),

£0:Co=0, no-lo=0, fo2=1.

Suppose &, #, ¢ is a solution of our system which satisfies the
initial conditions: &(ug, vo) = o, n{t0, vo) = no, (w0, vo) = Co.

Since &, = nu, there exists a vector function 7(1, v) for which
ru = &, 7p = . We shall show that the surface defined by the vector
equation 7 = 7(», v) has, in a neighborhood of the point (i ¢, vg),

Edu? + 2Fdudv + Gdv?

as its first quadratic form and

Ldu? 4+ 2Mdudv + Ndv?

as its second quadratic form.

We shall express the derivatives, with respect to #, v, of the six
quantities &2, %2, (2, &9, -¢, {-& again in terms of these same
quantities, making use of the equations of our system. Then we
obtain twelve equations
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(*) (4:2)” — Rz(EZ' 772' . .),

(C.E)’U = R12(£21 7721 te ')p

where Ry, R3, - - -, Ry2 are lincar homogeneous expressions in 2, 52,
s L6

The twelve equations (*) can be considered as a system of
differential equations for &2, 2, - - -, {-£. This system, obviously, is
satisfied if we replace £2, 42, -+, -¢by E, G, ---, 0, respectively.
Both these solutions have the same initial conditions (i.e. the same
values at the point (g, vp)). From this it follows, in virtue of the
uniqueness of the solution, that

£2=E, =G, &n=F &l=0 (7=0 =1
Since 74 = &, vy = 7, we have

ru2=£2=E, ru'h,:f'?]:F. 71)2:772:6'

Thus, the surface we have constructed has
Edu? + 2Fdudv + Gdv?

as its first quadratic form.

Further, since £-{ =#-{ =0 and (2 =1, { is a unit normal
vector to the constructed surface, and consequently, the coef-
ficients of the second quadratic form of the surface » = r(x, v) are
equal to

Eu-l, &, 771)'C~

Taking into consideration the expressions for the derivatives &,
é» and 7, in terms of &, %, { and the relations §:{ =0, -{ =0,
{2 =1, we have

511,'{:[" Ev‘C=M' nU'C=N‘
Hence, the surface thus constructed has
Ldu? 4 2Mdudv + Ndv?

as its second quadratic form.
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The existence of a surface with prescribed first and second
quadratic forms has thus been proved.

We shall now prove the uniqueness, to within position in space, of
such a surface.

Suppose @; and @ are two surfaces whose first and second
quadratic forms coincide. We shall associate the surfaces @; and
@2 by means of two corresponding points (e.g. by points corre-
sponding to the same values of the parameters, say (uo, vo)), with
the corresponding directions and normals. Such a correspondence is
possible in virtue of the fact that the first quadratic forms coincide.
Suppose 7 = 71(#, v) and 7 = ra(u, v) are the equations of the
surfaces after such a correspondence.

The system of differential equations in £, #, { obviously is
satisfied if we take

=14 N="1w =m
or

§="r2u, n=r {=mns
And since both these solutions coincide at the point (u, vg), they
coincide identically. Hence,

r1u(t, V) = ray(u, v), 71y(%, v) = 72p(u, V)
or
dri(u, v) = dra(n, v).
It follows that
r1{n, v) = ra(u, v) + c.

Since r; = g when # = #g, v = vy, we have ¢ = 0 and, conse-
quently, 71(%, v) = r2(u, v).

Thus, the surfaces @; and @, are indentical, to within position in
space.

This completes the proof of the theorem.

PROBLEMS AND THEOREMS FOR CHAPTER VIII

1;. Show that if the linear element of a surface is
ds? = Adu? + dv?),

then the Gaussian curvature of the surface is

I
K= — ——Alna
2% o
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where 4 is the Laplace operator

(az o2
4= W“La_)

15. Show that the surface with linear element

du? + dv?

ds? = ————

(2 + v2 4 ¢)?

has constant Gaussian curvature.
21. Show that if the linear element of a surface has the form

ds? = du? + 2 cos w dudv + dv?,
then the Gaussian curvature of the surface is

WDyy

K =

sinw

25. Prove that an arbitrary Chebyshevian net in a plane is
defined by the vector equation

r = @(u) + y(v).

The curves # = constant and v = constant form the net.
3. Find the Christoffel symbols I'y% for the case when the linear
element of the surface has the form

ds? = A(du? + dv?).

4,. Show that if the coordinate net on a surface is asymptotic,
then the following equalities are satisfied:

EG — F2)(In K)y + FE, — EGy = 0,
HEG — F¥)(In K), + FG, — GF, = 0,

where K is the Gaussian curvature of the surface.

45. Prove that the asymptotic curves on a surface with constant
negative curvature form a Chebyshevian net. And, conversely, if
the asymptotic net on a surface is Chebyshevian, then the Gaussian
curvature of the surface is constant.

5;. If the coordinate net on a surface consists of lines of curvature,
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then the Peterson-Codazzi formulas assume the form
L, = HE,,
Nu = HG“P
where H is the mean curvature of the surface. Show this.
5¢. If, on a minimal surface, one takes the lines of curvature as

coordinate curves, and chooses the parameters # and v for the
corresponding images, then the first and second quadratic forms

assume the form
I = Adu? + dv?),
II = du? — dv2,
Prove this assertion.
53. Suppose coordinates #, v arc introduced on a minimal
surface as in Exercise 52. Prove successively the following assertions:
a) if r(u, v) is the position vector of a point on the surface, then
Adr =0,
where 4 is the Laplace operator. Thus, the coordinates x(«, v),
y(u, v), z(u, v) of the vector 7(x, v) are harmonic functions;
b) if f1(w), f2(w), fa(w) (w = u + 7v) arc analytic functions with
real part x(u, v), y(», v), z(, v) respectively, then

12+ fo'2 4 f3'2 = 0.

S4. If f1(w), fo(w), f3(w) are three arbitrary analytic functions of
the variable w = » + ¢v, satisfying the condition

W fo? 4 [52 =0
and ¢1(#, v), pa(u, v), pa(u, v) are the real parts of these functions,
then the surface defined by the equations

=@u ), y=gn,9), z2=gs ),

is minimal. Prove this.
S5s5. Prove that any minimal surface can be defined by the
equations
z = Re [ (¢9%(w) + v*(w))dw, y = Rei[(p*(w) — y?(w))dw,
2z = Re [ 2ip(w)y(w)dw,
where ¢ and y are analytic functions of w = # + v, and Re denotes
the real part.



CHAPTER IX
INTRINSIC GEOMETRY OF SURFACES

Intrinsic geometry of a surface is that branch of geometry in
which we study the properties of surfaces and figures on them
which depend only on the length of curves on the surface. With
respect to regular surfaces one can say that their intrinsic geometry
studies the properties of the surfaces and figures on them which are
defined by the first quadratic form.

To the realm of intrinsic geometry belong length of curves on a
surface, the angle between curves, areas of regions, and the Gaussian
curvature of a surface.

In the present chapter we shall consider new concepts for surfaces
which are related only to its first quadratic form and thus belong
to the intrinsic geometry of the surface.

§ 1. Geodesic curvature of a curve on a surface. Suppose @
is a regular surface and that ¢ is a curve on @. We draw the tangent
plane « to the surface at an arbitrary point P of the curve y and we
then project a small neighborhood of the point P on the curve y
onto this plane. Then we obtain some curve # in the plane «. The
curvature of # at the point P is called the geodesic curvature of the
curve y at the point P. The geodesic curvature at the point P is
assumed to be positive or negative depending on whether the
rotation of the tangent to the curve ¥ in passing through the point P
gives rise to a right or left screw in comparison with the direction
of the normal to the curve at P. We shall find the expression for the
geodesic curvature of the curve.

We draw a cylindrical surface through the curve y with generators
perpendicular to the plane «. By the Meusnier theorem the curva-
ture % of the curve at the point P and the curvature « of the curve y
at the same point are connected by the relation

kcos ¢ = x,

where & is the angle formed by the principal normals to these
curves.
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Suppose » = #(s) is the natural parametrization of the curve y,
+ and 7 are the unit tangent and unit normal vectors to the curve ,
and that # is the unit normal vector to the surface. Then 7’ = ki,
# X n are directed along the normals to the curve ¢ at the point P
and, consequently, except for sign,
k = kcos ¢ = (F', ¥, n).
We now go over to an arbitrary parametrization of the curve 4.
We have
7' = 'ty = F(1)|F),
Fos’ = f(l/lftllz) + ft’(]/ft’l)s'-
If we substitute the above expressions for 7' and fs' into the
formula for &, we obtain

k= (1|79, 7, ),

where differentiation is with respect to the parameter ¢.

Suppose 7 = 7(u, v) is any regular parametrization of the surface
in a neighborhood of the point P and let # = u(t), v = v(f) be the
equation of the curve y in a neighborhood of this point. Then

F(t) = r(u(®), v(0)),
o= ryu’ 4 7y,
F'' = ryuth'? + 2ryytb’v’ + 70" F vy’ + rv’ =
= (u" + A)ry + (v"' + B)ry + Cn,
where
A = Ilu'2 + 2M3u'v" + ealv'2,
B = I'n?u'2 + 2INo2u'v’ + I'ap?v'2,
C = Lu'?2 + 2Mu'v’ 4+ Nv'2,
Substituting the expressions for # and # into the formula for «
and carrying out the simple computations we obtain

k = {VEG—F2|(Ew'2+2Fu'v'+Gv'2)*}(u''"v' —v"'u’' + Av'— Bu').

Since the quantities I'y* are expressed in terms of the coefficients
of the first quadratic form of the surface only, the geodesic curva-
ture of the curve on the surface is determined by only the metric
of the surface and, consequently, remains invariant under bending
of the surface.
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We shall find a formula for the geodesic curvature of the curve in
the case when the first quadratic form is

I = du? | Gdve.
In this case, as was shown in § 2, Chapter VIII,

I'il =0, I'ni2=0,
Il =0, I'2?2 = 3Gy/G,
Iool = —3Gy, T'es? = 3G,/G.

It follows that
A = — G2,
B = (Gu/G)u'v" + 4(Gy/G)v'2.

Consequently,

K= {\/El(u'2 + Gv2)} {u''v' — vy’ — §Gyv'3 —
— GofGw? — (GulGww),

§ 2. Geodesic curves on a surface. A curve on a surface is said
to be a geodesic curve if its geodesic curvature vanishes at each of
its points. We note two simple properties of geodesics.

1. If two surfaces are tangent along some curve y which is a
geodesic curve on one of the surfaces then y will also be a geodesic
curve on the other surface. This follows from the fact that the
geodesic curvature of the curve will be the same independently of
the surface we consider this curve to be on.

2. A necessary condition that the curve y be a geodesic curve is
that the osculating plane to the curve y be perpendicular to the
tangent plane to the surface at every point where the curvature of
the curve y does not vanish. In fact, the curvature % of the curve y
is connected with its geodesic curvature « by the relation % cos #=«.

It follows that a necessary condition for y to be a geodesic is that
cos ¥ = 0 for & # 0, which means that the osculating plane to the
curve is perpendicular to the tangent plane to the surface.

In order to obtain the differential equation of the geodesics, it
suffices to set the expression for geodesic curvature equal to zero.
Thus, the differential equation of the geodesics is

w'v' — v’ + Av' — Bu' = 0.
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THEOREM. A unique geodesic can be drawn in any divection through
every point on a regular surface.

PrOOF. Suppose P(uo, vg) is any point on the surface and
suppose (#o’ : vo’) is an arbitrary direction at this point.

We consider the following system of differential equations

w' +A4A=0 v'4+B=0.

Suppose # = #(¢) and v = v(f) is the solution of this system,
satisfying the initial conditions

’

u(to) = uo, v(fo) = vo, u'(fo) = uo’, v'(to) = vo'.
Then the curve on the surface, defined by the equations
u=u(), v=u),
is a geodesic inasmuch as
#'v —v'u + Av' — Bu' = 0.

This gcodesic passes through the point (1, vo) and has the di-
rection (#¢’ : vo') at this point. We shall show that it is unique.

Suppose two geodesics y1 and yz passing through the point
(#0, vo) on the surface have the same direction (g’ : vo’). Suppose
for definiteness that #o" = 0. Then both curves can be defined by
the following equations in a neighborhood of the point (1, vo):

The condition that the geodesic curvatures of the curves y; and ys
equal zero yields

—un" 4+ Ay’ — B =0,

— v 4+ Ave’ — B =0.

Thus, the functions v1(#) and va(%) satisfy the same differential
equation with the same initial conditions

vi(uo) = vo, v1'(mo) = vo'[uo’,
vz(#o) = vo, v2'(no) = vo'/uo’.

From this it follows that vy(#) = va(#), i.e. the curves y1 and y2
coincide in a neighborhood of the point (#9, vo) and, consequently,
they coincide everywhere.

This complete the proof of the theorem.
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§ 3. Semigeodesic parametrization of a surface. Supposc @
is a regular surface and that y is any regular curve on @ which passes
through the point P. Let # = 7(#, v) be any regular parametrization
of the surface and let # = u(¢), v = v(¢) be a regular parametrization
of the curve. Suppose the point P corresponds to the values uo, vo
and ¢y of the parameters.

We shall assume for definiteness that v'(fo) = 0. We solve the
equation v = v(f) with respect to ¢ in a neighborhood of (vo, £5). We
obtain ¢ = #(v).

We now consider the family S of curves in a neighborhood of the
point P, defincd by the equations # = u(¢(v)) + ¢ {c is a constant).
The curve y is a member of this family. As was shown in § 2, Chapter
VI, the surface can be parametrized in a ncighborhood of the point
P in such a way that the curves of the family S and those of a
family orthogonal to S will be coordinate curves. Suppose the
surface is parametrized in precisely this way and let the curve y
have the equations ¥ = up, v = v(f).

We draw through the point (#) on the curve ¥ a geodesic 9, in the
direction perpendicular to the direction of the curve y at this point.
For ¢ sufficiently close to #p, the geodesics y; can be defined in a
neighborhood of the point P by means of the equations

v = v(u, f)

where v(x, ) is a function satisfying the equation of the geodesics
with respect to #
— v 4+ Av - B=0.

It follows from the thcorem on the differentiability of the so-
lutions of differential equations with given initial conditions that
the function v(u, ¢) is regular in ¢.

Differentiating the identity v(f) = v(uo, {) with respect to ¢ and

0
noting that v'(¢) 5 0, we conclude that o v(uo, ) # 0. This permits

the solution of the equation v = v(%, ¢) in a neighborhood of (o,
Vg, to) With respect to £. We obtain

t =@, v) (pu® + @2 #0).

This equation yields the geodesics y; in a neighborhood of the point
P for ¢t near I.
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As was shown in § 2, Chapter VI, the surface can be parametrized
in a neighborhood of the point P in such a way that one family of
coordinate curves will be the curves ¢(#, v) = constant, and the
second family will be perpendicular to the first. Such a parametriza-
tion of the surface is called semigeodesic.

We shall now discuss the first quadratic form of a surface if the
parametrization is semigeodesic.

Since the parametrization is orthogonal, ¥ = 0 and, consequently

I = Edu? 4+ Gdve.

One family of coordinate curves, for example the curves v =
constant, are geodesics. Setting v = constant into the equations for
the geodesics

v —v'w + Av' — By =0
we obtain B = 0, from which we have
I'i? = —3E,/G =0,

l.e. E is independent of v.

Since E is independent of v, we can simplify the first quadratic
form by introducing a new parameter # in place of #, where the new
parameter is connected with # by the relation

dii = VE(u)du.
Then the first quadratic form will be
I = du? + Gdve.

In order to understand the geometric interpretation of the para-
meter #, it suffices to note that the length of the segment of any
geodesic v = constant, included between the curves % = ¢1, # = c3,
does not depend on v and is equal to |c1 — ¢3.

By introducing a new parameter ¥, connected with v by the
relation d6 = V/G(v, iig)dv, one can write the first quadratic form
of the surface as

= di? + G(4, 9)do?,

where @ = 1 along the curve % = ug.
If the curve @ = uo is also geodesic then it follows from the
equation of the geodesics that Gy = 0 along this curve.
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§ 4. Shortest curves on a surface. A curve y on a surface
joining the points P and Q is called a shorfest curve if any curve on
the surface joining the points P and @ has length greater than or
equal to the length of the curve y.

THEOREM. A geodesic on a sufficiently small segment is a shortest
curve. More precisely, if v is a geodesic and P is a point on it, and R
and S are points on the geodesic, sufficiently close to P, then the
segment RS on the geodesic is a shortest curve.

ProoF. We draw through the point P the geodesic # which is
perpendicular to y and we construct a semigeodesic coordinate net,
taking the geodesics perpendicular to 7 as the family of #-curves.
We choose the parameters # and v so that the point P is assigned the
values # = v = 0 and the linear element of the surface has the form

I = du? 4+ Gdv2.

We shall assume that the segment RS on the geodesic y is not the
shortest curve and that a curve # on the surface, joining the points
R and S, has length less than the length of the segment RS on
the geodesic y.

If the points R and S are sufficiently close to P, the curve §
passes through the interior of a neighborhood Up of the point P,
where the semigeodesic parametrization «, v is defined. We shall
show this.

Since the form du? 4 Gdv? is positive definite, there exists an
¢ > 0 such that if #2 4+ v2 < ¢ then

|r(w, v) — 7(0, 0)| = kVu2 + o2,

where % is a positive constant.

We shall now assume that the points R and S are so near the
point P that their space distance from P is less than 6. Then if the
curve ¥ joining R and S passes outside the “‘circular disc™ #24-v2<e
into the point @, then the length of § is, as is known, greater than
2ke — 26. It suffices to equate the length of the curve § with the
sum of the lengths of the rectilinear segments RQ and QS. We have
come to a contradiction since the length of the segment RS on the
geodesic y tends to zero when é — 0, and the length of the curve 7
is then bounded below by a positive number.

Hence, the curve 7 passes through the interior of the neighbor-
hood Up. In order to simplify the discussion, we shall assume that
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the curve § is pieceswise smooth. Suppose u = u(t), v = v(f) is its
equation. The length of the curve 7 is

® (8)
S(P) = Vu'2 + Gu2dt> [ |w'|dt > |us — ug|.
(R) (R)

But {up — ug| is the length of the segment RS on the geodesic y. We
have thus arrived at a contradiction.
This completes the proof of the theorem.

§ 5. The Gauss-Bonnet theorem. Suppose G is a region,
bounded by the closed piecewise regular curve y, onaregularsurface .
Assume G is homeomorphic to a circular disc. We shall direct the
curve y in such a way that by traversing the curve in this direction
on that side of the surface
toward which the normal # is
directed, the region G remains
on the right.

We shall denote the geodesic
curvature of the curve o at
an arbitrary point by «, and
ay, ag, * * +, ap Will be the angles
formed by the links y3, y2, - - -,
yn of the curve y on the side
of the region G (Iig. 24). The
following theorem holds.

THEOREM. If K is the Gaussian curvature of the surface and the
double integralion is over the area of the region G, then

Fig. 24

X[uds + X (w — or) = 2n ——édea.

k v k
In particular, if y is a regular curve, then

§ kds = 2n — [ [ Kdo.
v (2]

Proor. For simplicity of discussion, we shall assume that the
curve y is regular and that a semigeodesic parametrization of the
surface can be introduced in the entire region G.

Taking into consideration the formula for geodesic curvature of
the curve in semigeodesic coordinates, obtained in § 1, we shall have
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VG G G
ds = WiiGry (u”v’—v"u'—%Guv'a— %é u'v'2— 4&'—‘ u'2v’> dt =

VG -
= — 4 arctan —70— — V'(VG)ydt.

Since the function arctan is multiple valued and its values corre-
sponding to the same value of the argument differ by multiples of =,
we have

§ — d arctan VGv'ju’ = kax,
Y

where £ is some integer.
Ifurthermore, by Ostrogradsky’s formula, we have

3{ (VG)ydv= ” VG)yududv _U ‘/G )%/ Cudy —

—ff—lfda

$ xds = kx + [f — Kdo.
G

Y

Thus, we have

It remains to explain why % is an integer.
We have

kn = § — d arctan VGv'/u'.
¥

If G were equal to 1, then the quantity &z would be an angle
through which the tangent to the curve ¥ in the u, v-plane corre-
sponding to the curve y on the surface rotates as it traverses this
curve. The magnitude of this angle, as is known, equals 2.

Since the value of the integral

f —d M“;t,i)’i (A(u, v) > 0)

depends continuously on A(#, v) and equals 2 for A(x,v) =1, it
equals 2z for any function A(x, v) >0, and in particular, for
Au, v) = VG.

This completes the proof of the theorem.

Pogorelov, Diff. Geometry.
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A regivu uu a surface is called a geodesic triangle if it is bounded
by three geodesics and is homeomorphic to a circular disc.
The Gauss-Bonnet theorem, applied to a geodesic triangle,
yields
a+ﬁ+7=n+{ijd0-

From this it follows that the sum of the angles of a geodesic
triangle on a surface with positive curvature is greater than =, on a
surface with negative curvature it is less than x, and on a surface
with zero curvature it is equal to =

§ 6. Surfaces with constant Gaussian curvature. Supposc @
is a surface with constant Gaussian curvature K and that P is any
point on @. We introduce a semigeodesic parametrization on @ in a
neighborhood of the point P, starting with an arbitrary geodesic
which passes through P. The first quadratic form of the surface will
be

I = du? 4 Gdv?,

where it can be assumed that G(0, v) = 1 and G4(0, v) = 0.
Since the Gaussian curvature of the surface is constant and equal
to K, the coefficient G must satisfy the differential equation

(In the case of a semigeodesic parametrization of the surface, the
Gaussian curvature is K = —(V G)uu/(V 6).)

We shall distinguish three cases:a) K > 0,b) K < 0,c) K = 0.

In the first case, the general form of VG which satisfies equation
(*) will be

VG = A(v) cos vVEKu + B(v) sin VKu.
Since G(0, v) = 1 and G40, v) = O, we have A(v) = 1 and
B(v)=0. Thus, in the case K >0 there exists a parametrization
of the surface for which the first quadratic form is
I = du? 4 cos? VK udv?.

Analogously, in the second case, the first quadratic form of the
surface is
I = du? + cosh? vV — K udv?.
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Finally, in the third case, we have
I = du? 4 dv2.

THEOREM. All surfaces with constant Gaussian curvature K are
locally isometric. Moreover, if @1 and Dy are surfaces with constant
Gaussian curvature K, Py and Py are any points on these surfaces, |
and lz are arbitrary divections at these poinls, then there exists an
isometric mapping of a neighborhood of the point Py on the surface @,
onto a neighborhood of the point Py on the surface @2, for which the
direction ly on the surface @y at the point Py corresponds to the direction
11 on the surface @ at the point Py.

To prove this theorem it suffices to introduce a semigeodesic
parametrization in neighborhoods of the points P; and Pz on
the surfaces @, respectively @, starting with the geodesic directions
/1 and /3. In this connection, the first quadratic forms of the surfaces
will be the same, and the required isometric mapping is obtained by
setting points with the same coordinates into correspondence.

PrROBLEMS AND THEOREMS FOR CHAPTER IX

1. Show that if a geodesic curve is also an asymptotic curve then
it is a straight line.

Show that if a geodesic is also a line of curvature then it is a plane
curve.

2. Suppose y is a geodesic and that P is a point on y. Prove that if
a point  on the geodesic is sufficiently close to P, then the
segment PQ on y will be a shortest curve in comparison with all the
rectifiable curves (and not only with the piecewise smooth curves)
which join the points P and @ on the surface.

Prove that the segment PQ on the geodesic y is the only shortest
curve, joining the points P and Q on the surface, if the point Q is
sufficiently close to P.

3. Prove that a point P on a regular surface has a neighborhood
in which a semigeodesic parametrization can be introduced starting
with any geodesic which passes through P.

4. Using the two preceding theorems, prove that any shortest
curve on a regular surface is a geodesic.

5. Prove the whatever the neighborhood £ of the point P on a
regular surface one can always find a neighborhood w in £ such
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that any two points in the neighborhood w can be joined by a
shortest curve in the interior of 2.
6. Prove that on a complete surface any two points can be joined

by a shortest curve.
7. Show that the equation of geodesics in the case of semigeodesic
parametrization (ds2 = du? + Gdv2) can be written in the form

da G
dv au

where « is the angle at which the geodesics interscct the curves
v = constant.

8. Show that if the curve y on a surface defined by the equations
u = u(a), v = v(a), undergoes a deformation and goes over at time ¢
into the curve # = #(«) 4+ A{a)t, v = v(a) + p(«)t, then the variation
of the arc of the curve y subjected to this condition is

y —tf(a¢l odb oD Py oPd ')d o2
§ = o +—3v__'u+3_u’ "r‘ﬁ‘ﬂ « + 0(),
Y

where @ = (Eu'2 4 2Fu'v’ + Gv'2)t and O(¢2) denotcs the part of 4s
having order greater than or equal to 2,

Carrying out the integration by parts and assuming that the
endpoints of the curve y remain fixed under the deformation, show

that

A _tJ‘<8<D d(@d)))ld tf(é)d) d(é)tb)) o O(22
*= o T @ \ad ) M) G T\ ) O

Y 1

9. Taking the property of geodesics of being shortest curves on a

sufficiently small portion of a surface as point of departure, show
that the equations of the geodesics can be written in the form

o d<arp)_o o d(a¢> 0
. da \ow'/ T w  da\@')

where @ = (Eu'2 + 2Fu'v’ 4+ Gv'2)t. In particular, if
b =V1+ Gz,

the equation of the geodesics will be

3G,v'2 d ( Gv' ) _o

VIi+ Gz du \VI{Go?
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10. Show that the geodesic curves on a surface of revolution can
be found by quadratures.
11;. Show that the equations of geodesics for surfaces with linear

element
ds2 = (U(u) + V(v))(du?® + dv?)

(these surfaces are called Liouville surfaces) can be written in the
form

( Udv? — Vdu2>
du? + dv?

It follows from this thal the geodesic curves on Liouville surfaces are

found by quadratures. Namely, we have

J‘ du n dv n
E——— — = Ci1.
VU —¢ VV +¢
112. Prove that second degree surfaces are Liouville surfaces. The
coordinate net, with respect to which the linear element has the

form
dsz = (U + V)(du? 4 dv?),

consists of lines of curvature (see Problem 93, Chapter VII).

121. Show that in a neighborhood of an arbitrary point P on a
regular surface one can introduce a semigeodesic parametrization
u, v, which is distinguished as follows. The #-curves are geodesics
passing through the point P, and the v-curves are geodesic circum-
ferences with center P. If the parameters arc taken as #, the geodesic
distance from P, and v, the angle formed by the geodesic with some
fixed direction at the point P, then the linear element on the surface
assumes the form

ds? = du? + Gdv2.
When % >0, G >0, (VG)y -1, — _(%/%i’i — K(P), where K(P)

is the Gaussian curvature at P.
123. Suppose I(r) is the length of the geodesic circumference with
center at the point P on the surface and radius 7. Prove that

27 — |
lim 27— _ 7 ey,
r—0 r 3

where K(P) is the Gaussian curvature at the point P.
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13. Show that the geodesic curves on a surface with linear
element

are
au + fv + y = 0 («, 8, y are constants).

14;. Show that the equation

v

2 r
— " + P 2’3 + Puv 2'2 _I_ Puu o _:io
Pu Pu Pu

is satisfied by
v =c1p + ca (c1, c2 are constants).

145. Show that if the equation of the geodesics in semigeodesic
coordinates

G G
v + IGv'3 — 5—62 v'2 + Tuv' =0

has an integral of the form
v = c19(u, v) + c2,

where ¢; and cg are arbitrary constants, then G = U(#)V (v), and,
consequently, the Gaussian curvature of a surface along a v-curve is
constant.

143. The mapping of one surface onto another is said to be
geodesic if under this mapping the geodesics of one surface corre-
spond to the geodesics on the other. It follows from Problems 1g,
Chapter VIII, and 13, Chapter IX, that surfaces with constant
Gaussian curvature permit geodesic mappings onto a plane.

Prove that the only surfaces which possess this property are those
with constant Gaussian curvature (Beltrand’s theorem).

15;1. Suppose two points A and B are taken on the geodesic y
passing near the point O on a surface; suppose @ is the angle of the
geodesic triangle AOB at the vertex O and that « is the corresponding
angle of the plane triangle with the corresponding sides. Show that

P — «

7]

= {K*,

where g is the area of the geodesic triangle and K* approximates the
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Gaussian curvature of the surface at the point O, if the triangle is
sufficiently small.

15. Suppose 4 is a geodesic triangle, containing the point P, on a
surface. Suppose ¢, ?2, 33 are the angles of this triangle and that
a1, oz, ag are the angles of the corresponding plane triangle (see the
preceding problem). Prove that the three ratios

b1—a1  do—az P3—as

’ ’

g ag ag

tend to the common limit }K(P) when the triangle 4 shrinks to the
point P (Darboux’s theorem).

16. The surfaces I; and Fg are called the surfaces of centers of
the surface F if they are formed by the endpoints of segments of
lengths 1/%1 and 1/k2 (k1 and k2 are the principal curvatures of F),
marked off on the normals to the surface F. A point correspondence
is established in a natural way between the surfaces Fy, Fz and F.
Namely, points on the surfaces lying on the same normal to F are
corresponding points. Prove that geodesic curves on the surfaces of
centers correspond to lines of curvature on the surface F.
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— triangle, 162

Helicoid, 79, 136, 137
Helix, 18, 38, 63, 97
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Hyperbolic

— paraboloid, 97
— point, 91
Hyperboloid, 97

Image, 1

Implicit definition of a curve, 8
Indicatrix of curvature, 118
Integration of vector functions, 25
Intrinsic geometry of surfaces, 153
Inversion, 40

Involutes, 61

Isolated singular points, 14
Isometric surfaces, 109

Klein, VIII
Koenig’s theorem, 138

Laplace operator, 151

Length of a curve on a surface, 99
Limit of a vector function, 22
Linear surface element, 102
Lines of curvature, 121, 123
Liouville surfaces, 165
Lobachevsky, VIII

Locally one-to-one mapping, 4
Loxodromes, 113

Mainardi, 147

Mapping, 1, 107, 115
Mean curvature, 125, 126
Meridians, 133

Metric on a surface, 102
Meusnier’s theorem, 118
Minding, IX

Minimal surface, 140
Monge, VIII

Natural

— equations, 54, 57

— parametrization, 45, 48
— trihedron, 54
Neighborhood of a point, 2, 68
Nodal point, 14

Normal

— curvature, 118, 125

— plane, 30

— to a curve, 32

— to a surface, 84

One-to-one mapping, 1
Osculating

—— paraboloid, 87

— plane, 30

— sphere, 86
Ostrogradsky’s formula, 161

Parallel surfaces, 139
Parallels, 133
Parametrizations of a surface, 73

INDEX

Parabola, 62

Parabolic point, 91

Pascal limagon, 39

Peterson, IX
Peterson-Codazzi formulas, 146
Plane curves, 8, 57
Polygonal arc, 44

Principal

— curvatures, 122, 125

— directions on a surface, 121
— normal, 32

Pseudosphere, 79, 136

Radius of curvature, 58
Rectifiable segment, 44
Rectilinear generators, 130
Regular

— curve, 6

— point, 9

— surface, 69

Riemann, VIII
Rodrigues’s theorem, 123
Ruled surfaces, 130

Schwartz’s formula, 141

Second quadratic form, 116

Segment of a curve, 42

Semicubical parabola, 19, 64

Semigeodesic parametrization, 157

Shortest curves, 159

Simple

— curve, 2

— surface, 67

Singular

— curves, 70

— points on analytic curves, 12

— points on regular plane curves 9, 10

— points on regular surfaces, 75

Smooth

—curve, 6

— surface, 70

Sphere, 96

Spherical

— curve, 98

— image of a set, 128

— point, 122

Stereographic projection, 108

Surface area, 104

Surfaces

— of centers, 167

— of Liouville, 165

— of revolution, 133

— of translation, 79

— with constant Gaussian curvature,
162

Tangent
— plane, 80
— to a curve, 26
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Turning point
-—- of the first kind, 12
— of the second kind, 12

‘Topological mapping, 1
Torsion of a curve, 52
Torus, 68

Total curvature, 127
Tractrix, 19, 38, 64, 136 Umbilical point, 91
Trajectory parabola, 39 Uniqueness of a surface, 147
Translation surface, 79, 98, 138

‘Trihedron, 54 Vector functions of a scalar argument, 22
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